Multiple regulatory elements distant from their targets on the linear genome can influence the expression of a single gene through chromatin looping. Chromosome conformation capture implemented in Hi-C allows for genome-wide agnostic characterization of chromatin contacts. However, detection of functional enhancer–promoter interactions is precluded by its effective resolution that is determined by both restriction fragmentation and sensitivity of the experiment. Here we develop a capture Hi-C (cHi-C) approach to allow an agnostic characterization of these physical interactions on a genome-wide scale. Single-nucleotide polymorphisms associated with complex diseases often reside within regulatory elements and exert effects through long-range regulation of gene expression. Applying this cHi-C approach to 14 colorectal cancer risk loci allows us to identify key long-range chromatin interactions in cis and trans involving these loci.
SummaryGlioblastoma (GBM) is a lethal malignancy whose clinical intransigence has been linked to extensive intraclonal genetic and phenotypic diversity and the common emergence of therapeutic resistance. This interpretation embodies the implicit assumption that cancer stem cells or tumor-propagating cells are themselves genetically and functionally diverse. To test this, we screened primary GBM tumors by SNP array to identify copy number alterations (a minimum of three) that could be visualized in single cells by multicolor fluorescence in situ hybridization. Interrogation of neurosphere-derived cells (from four patients) and cells derived from secondary transplants of these same cells in NOD-SCID mice allowed us to infer the clonal and phylogenetic architectures. Whole-exome sequencing and single-cell genetic analysis in one case revealed a more complex clonal structure. This proof-of-principle experiment revealed that subclones in each GBM had variable regenerative or stem cell activity, and highlighted genetic alterations associated with more competitive propagating activity in vivo.
Retroviral insertional mutagenesis in BXH2 mice commonly induces myeloid leukemias. One of the most frequently involved genes in experimental studies is Meis 1. In contrast to other genes in murine models, Meis 1 has not been affected by recurrent chromosomal translocations or point mutations in human leukemias. We found a constant downregulation of the Meis 1 gene mRNA in AML1-ETO acute myeloid leukemias and in those cases harboring in frame mutations in the bZIP domain of CEBPa. The absence of the Meis 1 mRNA was not caused by inactivating point mutations in the coding sequence. Promoter hypermethylation was present in more than half of the cases (9/14), including samples obtained from the widely employed Kasumi-1 cell line. Double treatment with 5-Aza-2 0 -deoxycytidine and trichostatin A of the Kasumi-1 cell line partially reverses Meis 1 inhibition. HoxA9 levels were also low. In a cell line model (U937 Tet AML1-ETO), AML1-ETO expression was not associated with Meis 1 suppression at 72 h. Nevertheless, Meis 1 repression is dependent on the AML1-ETO transcript levels in treated leukemic patients. Chimeric products that arise from chromosomal translocations may be associated with locus-specific epigenetic inactivation. It remains to be investigated when this methylation process is acquired and which are the basic mechanisms underlying these molecular events in AML1-ETO and CEBPa-mutated AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.