Chemical and biochemical changes of pumpkin (Cucumis moschata, Duch) tissue in relation to osmotic stress were studied and related to tissue textural behavior. Turgor pressure of raw tissue was adjusted by immersion in hypotonic (0.0 mol m −3 ), isotonic (250 mol m −3 ) and plasmolyzing (1050 mol m −3 ) buffered (20 mol m −3 potassium phosphate, pH 6.8) solutions of poly(ethylene glycol) 400 (PEG). It was found that a substantial proportion of polysaccharides located in the cell wall (CW)-middle lamellae (ML) of studied tissue was water extractable. This proportion decreased when CW-stretch increased. Ionically bound peroxidase (POX) presented an increased activity in swollen and isotonic tissue, probably associated to oxidative cross-linking of extensin located in the CW of this tissue, as a response to stress promoted by cut, immersion and turgor pressure change. The resistance of CW to elongation when equilibrated in hypotonic medium, might be ascribed to reinforcement of the CW by the oxidative cross-linking of extensin, with simultaneous formation of pectin-in-extensin entanglements. Plasmolyzed tissue where CW is relaxed, showed pectin-rhamnogalacturonan degradation. The water-soluble fraction (WSF) was shown to be a negative function of CW stretching and infinite force of relaxation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.