Mangroves sequester large quantities of carbon (C) that become significant sources of greenhouse gases when disturbed through land-use change. Thus, they are of great value to incorporate into climate change adaptation and mitigation strategies. In response, a global network of mangrove plots was established to provide policy-relevant ecological data relating to interactions of mangrove C stocks with climatic, tidal, plant community, and geomorphic factors. Mangroves from 190 sites were sampled across five continents encompassing large biological, physical, and climatic gradients using consistent methodologies for the quantification of total ecosystem C stocks (TECS). Carbon stock data were collected along with vegetation, physical, and climatic data to explore potential predictive relationships. There was a 28-fold range in TECS (79-2,208 Mg C/ha) with a mean of 856 AE 32 Mg C/ha. Belowground C comprised an average 85% of the TECS. Mean soil depth was 216 cm, ranging from 22 to >300 cm, with 68 sites (35%) exceeding a depth of 300 cm. TECS were weakly correlated with metrics of forest structure, suggesting that aboveground forest structure alone cannot accurately predict TECS. Similarly, precipitation was not a strong predictor of TECS. Reasonable estimates of TECS were derived via multiple regression analysis using precipitation, soil depth, tree mass, and latitude (R 2 = 0.54) as variables. Soil carbon to a 1 m depth averaged 44% of the TECS. Limiting analyses of soil C stocks to the top 1 m of soils result in large underestimates of TECS as well as in the greenhouse gas emissions that would arise from their conversion to other land uses. The current IPCC Tier 1 default TECS value for mangroves is 511 Mg C/ha, which is only 60% of our calculated global mean. This study improves current assessments of mangrove C stocks providing a foundation necessary for C valuation related to climate change mitigation. We estimate mangroves globally store about 11.7 Pg C: an aboveground carbon stock of 1.6 Pg C and a belowground carbon stock of 10.2 Pg C). The differences in the estimates of total ecosystem carbon stocks based on climate, salinity, forest structure, geomorphology, or geopolitical boundaries are not as much of an influence as the choice of soil depth included in the estimate. Choosing to limit soils to a 1 m depth resulted in estimates of <5 Pg whereas those that included the soil profile >1 m depth resulted in global carbon stock estimates that exceeded 11.2 Pg C.
Scientists have the difficult task of clearly conveying the ecological consequences of forest and wetland loss to the public. To address this challenge, we scaled the atmospheric carbon emissions arising from mangrove deforestation down to the level of an individual consumer. This type of quantification represents the “land‐use carbon footprint”, or the amount of greenhouse gases (GHGs) generated when natural ecosystems are converted to produce commodities. On the basis of measurements of ecosystem carbon stocks from 30 relatively undisturbed mangrove forests and 21 adjacent shrimp ponds or cattle pastures, we determined that mangrove conversion results in GHG emissions ranging between 1067 and 3003 megagrams of carbon dioxide equivalent (CO2e) per hectare. There is a land‐use carbon footprint of 1440 kg CO2e for every kilogram of beef and 1603 kg CO2e for every kilogram of shrimp produced on lands formerly occupied by mangroves. A typical steak and shrimp cocktail dinner would burden the atmosphere with 816 kg CO2e. This is approximately the same quantity of GHGs produced by driving a fuel‐efficient automobile from Los Angeles to New York City. Failure to include deforestation in life‐cycle assessments greatly underestimates the GHG emissions from food production.
The conservation of mangroves and other coastal ''blue carbon'' ecosystems is receiving heightened attention because of recognition of their high ecosystem carbon stocks as well as vast areas undergoing land conversion. However, few studies have paired intact mangroves with degraded sites to determine carbon losses due to land conversion. To address this gap we quantified total ecosystem carbon stocks in mangroves and cattle pastures formed from mangroves in the large wetland complex of the Pantanos de Centla in SE Mexico. The mean total ecosystem carbon stocks of fringe and estuarine tall mangroves was 1358 Mg C/ha. In contrast the mean carbon stocks of cattle pastures was 458 Mg C/ha. Based upon a biomass equivalence of losses from the top 1 m of mangrove soils, the losses in carbon stocks from mangrove conversion are conservatively estimated at 1464 Mg CO 2 e/ha. These losses were 7-fold that of emissions from tropical dry forest to pasture conversion and 3-fold greater than emissions from Amazon forest to pasture conversion. However, we found that limiting ecosystem carbon stocks differences to the surface 1 m or even 2 m soil depth will miss losses that occurred from deeper horizons. Mangrove conversion to other land uses comes at a great cost in terms of greenhouse gas emissions as well losses of other important ecosystem services.
La diversidad de flora y fauna acuática y terrestre se analizó en el embalse suburbano «El Costeñito» y Jardín Botánico en la DACBiol-UJAT mediante una Evaluación Rápida de la Biodiversidad. Para calificar la calidad del agua se calcularon los índices de la calidad del agua y del Índice de Estado Trófico de Carlson. La calidad del agua fue calificada como mala según criterios establecidos por el WQI. La condición hipereutrófica dominante en el embalse fue determinada por los elevados contenidos de fosforo total y baja transparencia. En el presente estudio se reportan 98 especies y tres órdenes de plantas, moluscos, insectos acuáticos, peces, anfibios, reptiles y aves de las cuales 11 especies del total de las reportadas se encuentran bajo algún criterio de clasificación por la NOM-059-SEMARNAT-2010. La condición hipereutrófica, la mala calidad del agua, la baja riqueza de especies de peces, moluscos e insectos y la ausencia de macroinvertebrados indican que el embalse está en un proceso continuo de degradación ambiental.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.