Capillary malformation-arteriovenous malformation (CM-AVM) is an autosomal-dominant disorder, caused by heterozygous RASA1 mutations, and manifesting multifocal CMs and high risk for fast-flow lesions. A limited number of patients have been reported, raising the question of the phenotypic borders. We identified new patients with a clinical diagnosis of CM-AVM, and patients with overlapping phenotypes. RASA1 was screened in 261 index patients with: CM-AVM (n = 100), common CM(s) (port-wine stain; n = 100), Sturge-Weber syndrome (n = 37), or isolated AVM(s) (n = 24). Fifty-eight distinct RASA1 mutations (43 novel) were identified in 68 index patients with CM-AVM and none in patients with other phenotypes. A novel clinical feature was identified: cutaneous zones of numerous small white pale halos with a central red spot. An additional question addressed in this study was the "second-hit" hypothesis as a pathophysiological mechanism for CM-AVM. One tissue from a patient with a germline RASA1 mutation was available. The analysis of the tissue showed loss of the wild-type RASA1 allele. In conclusion, mutations in RASA1 underscore the specific CM-AVM phenotype and the clinical diagnosis is based on identifying the characteristic CMs. The high incidence of fast-flow lesions warrants careful clinical and radiologic examination, and regular follow-up.
Focal dermal hypoplasia (FDH) is an X-linked dominant multisystem birth defect affecting tissues of ectodermal and mesodermal origin. Using a stepwise approach of (i) genetic mapping of FDH, (ii) high-resolution comparative genome hybridization to seek deletions in candidate chromosome areas and (iii) point mutation analysis in candidate genes, we identified PORCN, encoding a putative O-acyltransferase and potentially crucial for cellular export of Wnt signaling proteins, as the gene mutated in FDH. The findings implicate FDH as a developmental disorder caused by a deficiency in PORCN.
Ichthyosis follicularis with atrichia and photophobia (IFAP syndrome) is a rare X-linked, oculocutaneous human disorder. Here, we assign the IFAP locus to the 5.4 Mb region between DXS989 and DXS8019 on Xp22.11-p22.13 and provide evidence that missense mutations exchanging highly conserved amino acids of membrane-bound transcription factor protease, site 2 (MBTPS2) are associated with this phenotype. MBTPS2, a membrane-embedded zinc metalloprotease, activates signaling proteins involved in sterol control of transcription and ER stress response. Wild-type MBTPS2 was able to complement the protease deficiency in Chinese hamster M19 cells as shown by induction of an SRE-regulated reporter gene in transient transfection experiments and by growth of stably transfected cells in media devoid of cholesterol and lipids. These functions were impaired in five mutations as detected in unrelated patients. The degree of diminished activity correlated with clinical severity as noted in male patients. Our findings indicate that the phenotypic expression of IFAP syndrome is quantitatively related to a reduced function of a key cellular regulatory system affecting cholesterol homeostasis and ability to cope with ER stress.
Desmosomes are intercellular adhesive junctions and attachment sites for the intermediate filament (IF) cytoskeleton, prominent in tissues subject to high levels of mechanical stress such as the epidermis and heart. The obligate desmosomal constituent, plakoglobin (PG), is involved in coupling transmembrane desmosomal components with IFs. PG also contributes to intercellular adhesion through adherens junctions and has additional signaling roles. To date, two mutations in the gene encoding PG, JUP, have been described, and in both instances, patients harboring pathogenic mutations suffered from arrhythmogenic right ventricular cardiomyopathy with or without skin abnormalities. We describe homozygous nonsense mutation, p.S24X, and homozygous splice site mutation, c.468G>A, in the JUP gene that results in skin fragility, diffuse palmoplantar keratoderma, and woolly hair with no symptoms of cardiomyopathy. We show barely detectable levels of PG immunostaining in skin sections from patients harboring these mutations and show that an alternative AUG codon in p.S24X mRNA translates a 42-amino-acid N-terminal truncation. We conclude that PG is required for correct maintenance of skin integrity, and the absence of heart phenotype in patients suggests that aberrant PG expression does not compromise normal human heart development in children. Our findings provide new insight into the distinct roles that PG has in the epidermis and heart.
The X-linked dominant trait focal dermal hypoplasia (FDH, Goltz syndrome) is a developmental defect with focal distribution of affected tissues due to a block of Wnt signal transmission from cells carrying a detrimental PORCN mutation on an active X-chromosome. Molecular characterization of 24 unrelated patients from different ethnic backgrounds revealed 23 different mutations of the PORCN gene in Xp11.23. Three were microdeletions eliminating PORCN and encompassing neighboring genes such as EBP, the gene associated with ConradiHünermann-Happle syndrome (CDPX2). 12/24 patients carried nonsense mutations resulting in loss of function. In one case a canonical splice acceptor site was mutated, and 8 missense mutations exchanged highly conserved amino acids. FDH patients overcome the consequences of potentially lethal X-chromosomal mutations by extreme skewing of X-chromosome inactivation in females, enabling transmission of the trait in families, or by postzygotic mosaicism both in male and female individuals. Molecular characterization of the PORCN mutations in cases diagnosed as Goltz syndrome is particularly relevant for genetic counseling of patients and their families since E619 PORCN Mutations in FDHno functional diagnostic test is available and carriers of the mutation might otherwise be overlooked due to considerable phenotypic variability associated with the mosaic status. ©2009Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.