Asthma is a chronic inflammatory disease of the airways related to epithelial damage, bronchial hyperresponsiveness to contractile agents, tissue remodeling, and luminal narrowing. Currently, there are many data about the pathophysiology of asthma; however, a new aspect has emerged related to the influence of reactive oxygen and nitrogen species (ROS and RNS) on the origin of this disease. Several studies have shown that an imbalance between the production of ROS and RNS and the antioxidant enzymatic and nonenzymatic systems plays an important role in the pathogenesis of this disease. Considering this aspect, this study is aimed at gathering data from the scientific literature on the role of oxidative distress in the development of inflammatory airway and lung diseases, especially bronchial asthma. For that, articles related to these themes were selected from scientific databases, including human and animal studies. The main findings of this work showed that the respiratory system works as a highly propitious place for the formation of ROS and RNS, especially superoxide anion, hydrogen peroxide, and peroxynitrite, and the epithelial damage is reflected in an important loss of antioxidant defenses that, in turn, culminates in an imbalance and formation of inflammatory and contractile mediators, such as isoprostanes, changes in the activity of protein kinases, and activation of cell proliferation signalling pathways, such as the MAP kinase pathway. Thus, the oxidative imbalance appears as a promising path for future investigations as a therapeutic target for the treatment of asthmatic patients, especially those resistant to currently available therapies.
Flavonoid galetin 3,6-dimethyl ether (FGAL) has been isolated from the aerial parts of Piptadenia stipulaceae and has shown a spasmolytic effect in guinea pig ileum. Thus, we aimed to characterize its relaxant mechanism of action. FGAL exhibited a higher relaxant effect on ileum pre-contracted by histamine (EC50=1.9±0.4×10(-7) M) than by KCl (EC50=2.6±0.5×10(-6) M) or carbachol (EC50=1.8±0.4×10(-6) M). The flavonoid inhibited the cumulative contractions to histamine, as well as to CaCl2 in depolarizing medium nominally Ca(2+)-free. The flavonoid relaxed the ileum pre-contracted by S-(-)-Bay K8644 (EC50=9.5±1.9×10(-6) M) but less potently pre-contracted by KCl or histamine. CsCl attenuated the relaxant effect of FGAL (EC50=1.1±0.3×10(-6) M), but apamin or tetraethylammonium (1mM) had no effect (EC50=2.6±0.2×10(-7) and 1.6±0.3×10(-7) M, respectively), ruling out the involvement of small and big conductance Ca(2+)-activated K(+) channels (SKCa and BKCa, respectively). Either 4-aminopyridine or glibenclamide attenuated the relaxant effect of FGAL (EC50=1.8±0.2×10(-6) and 1.5±0.5×10(-6) M, respectively), indicating the involvement of voltage- and ATP-sensitive K(+) channels (KV and KATP, respectively). FGAL did not alter the viability of intestinal myocytes in the MTT assay and decreased (88%) Fluo-4 fluorescence, indicating a decrease in cytosolic Ca(2+) concentration. Therefore, the relaxant mechanism of FGAL involves pseudo-irreversible noncompetitive antagonism of histaminergic receptors, KV and KATP activation and blockade of CaV1, thus leading to a reduction in cytosolic Ca(2+) levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.