The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across ‘all epilepsies’ lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research.
Objective Focal cortical dysplasia (FCD) is a major cause of difficult‐to‐treat epilepsy in children and young adults, and the diagnosis is currently based on microscopic review of surgical brain tissue using the International League Against Epilepsy classification scheme of 2011. We developed an iterative histopathological agreement trial with genetic testing to identify areas of diagnostic challenges in this widely used classification scheme. Methods Four web‐based digital pathology trials were completed by 20 neuropathologists from 15 countries using a consecutive series of 196 surgical tissue blocks obtained from 22 epilepsy patients at a single center. Five independent genetic laboratories performed screening or validation sequencing of FCD‐relevant genes in paired brain and blood samples from the same 22 epilepsy patients. Results Histopathology agreement based solely on hematoxylin and eosin stainings was low in Round 1, and gradually increased by adding a panel of immunostainings in Round 2 and the Delphi consensus method in Round 3. Interobserver agreement was good in Round 4 (kappa = .65), when the results of genetic tests were disclosed, namely, MTOR, AKT3, and SLC35A2 brain somatic mutations in five cases and germline mutations in DEPDC5 and NPRL3 in two cases. Significance The diagnoses of FCD 1 and 3 subtypes remained most challenging and were often difficult to differentiate from a normal homotypic or heterotypic cortical architecture. Immunohistochemistry was helpful, however, to confirm the diagnosis of FCD or no lesion. We observed a genotype–phenotype association for brain somatic mutations in SLC35A2 in two cases with mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Our results suggest that the current FCD classification should recognize a panel of immunohistochemical stainings for a better histopathological workup and definition of FCD subtypes. We also propose adding the level of genetic findings to obtain a comprehensive, reliable, and integrative genotype–phenotype diagnosis in the near future.
Epilepsy is a common and serious neurological disorder, with many different constituent conditions characterized by their electro clinical, imaging, and genetic features.MRI has been fundamental in advancing our understanding of brain processes in the epilepsies. Smaller-scale studies have identified many interesting imaging phenomena, with implications both for understanding pathophysiology and improving clinical care.
Objective: The aim was to compare the outcomes of subdural electrode (SDE) implantations versus stereotactic electroencephalography (SEEG), the 2 predominant methods of intracranial electroencephalography (iEEG) performed in difficult-to-localize drug-resistant focal epilepsy. Methods: The Surgical Therapies Commission of the International League Against Epilepsy created an international registry of iEEG patients implanted between 2005 and 2019 with ≥1 year of follow-up. We used propensity score matching to control exposure selection bias and generate comparable cohorts. Study endpoints were: (1) likelihood of resection after iEEG; (2) seizure freedom at last follow-up; and (3) complications (composite of postoperative infection, symptomatic intracranial hemorrhage, or permanent neurological deficit).Results: Ten study sites from 7 countries and 3 continents contributed 2,012 patients, including 1,468 (73%) eligible for analysis (526 SDE and 942 SEEG), of whom 988 (67%) underwent subsequent resection. Propensity score matching improved covariate balance between exposure groups for all analyses. Propensity-matched patients who underwent SDE had higher odds of subsequent resective surgery (odds ratio [OR] = 1.4, 95% confidence interval [CI] 1.05, 1.84) and higher odds of complications (OR = 2.24, 95% CI 1.34, 3.74; unadjusted: 9.6% after SDE vs 3.3% after SEEG). Odds of seizure freedom in propensity-matched resected patients were 1.66 times higher (95% CI 1.21, 2.26) for SEEG compared with SDE (unadjusted: 55% seizure free after SEEG-guided resections vs 41% after SDE). Interpretation: In comparison to SEEG, SDE evaluations are more likely to lead to brain surgery in patients with drugresistant epilepsy but have more surgical complications and lower probability of seizure freedom. This comparativeeffectiveness study provides the highest feasible evidence level to guide decisions on iEEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.