The purpose of our study is to develop and evaluate a method for radiopaque 3-D printing (R3P) of soft tissue computed tomography (CT) phantoms with office laser printers. Five laser printers from different vendors are tested for toner CT attenuation. A liver phantom is created by printing CT images of a patient liver on office paper. One thousand eight hundred sixty paper sheets are printed with three repeated prints per page, resulting in a stack of 18.6 cm. The phantom is examined with 12 tube current settings. Images are reconstructed using filtered back projection (FBP) and iterative reconstruction [adaptive iterative dose reduction 3D (AIDR 3D)]. Seven radiologists rated image quality of all acquisitions. Toner attenuation of all investigated printers increased linearly with the print template grayscale. The liver phantom reproduced anatomic detail and attenuation values of the patient (mean AE SD HU difference 12.68 AE 7.74). Image quality scores increased with dose but did not vary significantly above a threshold dose for AIDR 3D. Overall, AIDR 3D reconstructed images are rated superior to FBP reconstructions (p < 0.001). In conclusion, R3P with standard office laser printers can generate soft tissue CT phantoms without hardware manipulations but with limited flexibility regarding attenuation properties of the printed toner material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.