The numerical modeling of an electroosmosis flow in a rectangular three-dimensional rotating microchannel has been studied. The study’s goal is to calculate the flow’s development length, and as a novelty, a correlation is proposed to estimate the development length. The flow was simulated for angular velocity (ω) ranges of 0–9 and electric potential (φ) ranges of 0.1–0.3. The results were imported into the curve fitting toolbox to determine a correlation for the development length. The correlation was obtained as a function of angular velocity, electric potential, and hydraulic diameter. The results show that increasing both ω and φ leads to an increase in flow development length, where for constant φ, increasing ω from 0 to 9 results in a 20%–30% increase in development length. Furthermore, increasing φ from 0.1 to 0.3 for a constant ω raises development length by 35%–50%. The velocity field and its parameters, such as ω and φ, were analyzed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.