The vascular endothelium represents a population of squamous epithelial cells characterized by a particular histological localization (intima of blood vessels) and by several physiological functions such as the transport of substances between blood and tissues, the modulation of the vascular tone, the control of blood coagulation and that of the leukocyte extravasation. In spite of all these elements in common and of an identical embryonic origin, endothelial cells show definite morphological and physiological variations that divide them into types and subtypes, each specifically associated to various categories of organs. Even within the vasculature of the same organ, there are clear segmental (arterial/capillary/venous) differentiations of the endothelial cells. While the morphological and physiological differences between endothelial cells are well documented, there are very few data on the biochemistry underlying this heterogeneity. This work presents several data suggesting that, at present, the domain is ripe for a comprehensive analysis of this biochemical diversity, at least in what concerns the luminal aspect of the endothelial plasmalemma, a compartment of crucial importance in the biology and pathology of the cardiovascular system.
SUMMARYPurpose: To study the utility of magnetoencephalography (MEG) in patients with refractory insular epilepsy. Covered by highly functional temporal, frontal, and parietal opercula, insular-onset seizures can manifest a variety of ictal symptoms falsely leading to a diagnosis of temporal, frontal, or parietal lobe seizures. Lack of recognition of insular seizures may be responsible for some epilepsy surgery failures. Methods: We retrospectively reviewed and analyzed MEG data in 14 patients with refractory insular seizures defined through intracranial electroencephalography (EEG) or by the presence of an epileptogenic lesion in the insula with compatible seizure semiology. MEG was performed as part of the noninvasive presurgical evaluation, using a 275-channel whole head MEG system. MEG data were analyzed using a single equivalent current dipole model. MEG localization was compared to interictal positron emission tomography (PET) and ictal single photon emission computed tomography (SPECT) results and to the resection margin. Key Findings: Three patterns of MEG spike sources were observed. Seven patients showed an anterior operculoinsular clusters and two patients had a posterior operculoinsular cluster. No spikes were detected in one patient, and the remaining four patients showed a diffuse perisylvian distribution. Spike sources showed uniform orientation perpendicular to the sylvian fissure. Nine patients proceeded to insular epilepsy surgery with favorable surgical outcome. Among patients with anterior operculoinsular cluster who proceeded to have surgery, MEG provided superior information to ictal SPECT in four of six patients and to interictal PET in five of six patients. Significance: MEG is useful in identifying patients who are likely to benefit from epilepsy surgery targeting the insula, particularly if a tight dipole cluster is identified even if other noninvasive modalities fail to produce localizing results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.