The mitochondrial genome size of 26 different Schizosaccharomyces pombe strains varies between 17.6 and 24.6 kilobase pairs due to the presence or absence of introns. One of these is the group II intron in the gene encoding apocytochrome b (cob: intron cobI1). Partial DNA sequences of continuous cob genes from six strains (including strain EF1: Trinkl et al. 1985) revealed identical nucleotide sequence in the region where the group II intron is inserted in the mosaic form of the gene. In contrast, analysis of the mosaic cob gene in strain UCD-FstI revealed several base pair changes in the exon regions flanking the splice point, compared with the continuous genes and with the mosaic cob gene in strain 50 (Lang et al. 1985). The base pair differences between the exons of the two mosaic cob genes and the identity of exons in all continuous cob genes argue in favour of the two cob introns in strains 50 and UCD-FstI as independent later acquisitions of the genes, rather than loss of the intron from a common mosaic ancestor of all strains. Other introns present in some but not all strain include two group I introns without open reading frame in the gene encoding subunit 1 of cytochrome c oxidase (cox1: introns cox1I2a and cox1I3), and two group I introns with open reading frames in the same gene (introns cox1I1 and cox1I2b).
In this paper we report the inability of four group I introns in the gene encoding subunit I of cytochrome c oxidase (cox1) and the group II intron in the apocytochrome b gene (cob) to splice autocatalytically. Furthermore we present the characterization of the first cox1 intron in the mutator strain anar-14 and the construction and characterization of strains with intronless mitochondrial genomes. We provide evidence that removal of introns at the DNA level (termed DNA splicing) is dependent on an active RNA maturase. Finally we demonstrate that the absence of introns does not abolish homologous mitochondrial recombination.
Between the genes for tRNA(gin) and tRNA(ile) an open reading frame of 227 amino acids has been identified which is unique among known mitochondrial genomes and which has been termed urf a (Lang et al. 1983; Kornrumpf et al. 1984). It uses the "mitochondrial" genetic code, i.e., it contains a TGA codon, whereas all other protein-encoding genes, and all but one intronic open reading frame, use the "standard" genetic code (UGG for tryptophan). A previous paper has demonstrated that "mutator" strains show an increased formation of mitochondrial drug-resistant and respiration-deficient mutants (including deletions). In this paper we show that the mutator activity is correlated with mutations in urf a. A detailed analysis of one urf a mutant is presented (anar-6), where the deletion of an A residue leads to a frameshift mutation and consequently to premature termination of the putative protein. The phenotype of colonies originating from a single mutant clone varies from no growth up to full growth on non-fermentable substrate. This phenomenon of phenotypic segregation can be explained by the ability of the cell to perform translational frameshifting. A detailed analysis of the DNA sequence and the putative urf a protein will be presented and a possible function of the protein will be discussed.
The Schizosaccharomyces pombe strain EF1 (CBS 356) is haploid, prototrophic, respiratory competent, and of homothallic mating type. From restriction enzyme analysis the length of the mitochondrial genome is 17.3 kilobase pairs, which is in good agreement with the value of 17.1 kilobase pairs determined by electron microscopy. The mitochondrial genome of strain EF1 is thus about 2.3 kilobase pairs shorter than that of strain ade7-50h- (about 19.4 kilobase pairs). A restriction map was constructed for 11 enzymes: For most, but not all of them, the pattern is nearly identical to that of strain ade7-50h-. The genes for the large ribosomal RNA, the subunits 1, 2, and 3 of cytochrome c oxidase, subunits 6 and 9 of ATP synthetase, and cytochrome b were localized by hybridization with mitochondrial DNA probes from Saccharomyces cerevisiae. The gene order was found to be the same in both yeast strains. From Southern hybridization of strain ade7-50h- with nick-translated mitochondrial DNA from strain EF1 it is evident that strain EF1 does not possess the intron, which is present in the cytochrome b gene of Schizosaccharomyces pombe strain ade7-50h-. Crosses between strain ade7-50h- and EF1 demonstrate that both the nuclear and the mitochondrial genomes are able to recombine. The mitochondrial genomes of 2 out of 30 independently isolated hybrids between the two strains are described as the result of recombination between the two parental mitochondrial genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.