Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) -induced infection, the cause of coronavirus disease 2019 (COVID-19), is characterized by unprecedented clinical pathologies. One of the most important pathologies, is hypercoagulation and microclots in the lungs of patients. Here we study the effect of isolated SARS-CoV-2 spike protein S1 subunit as potential inflammagen sui generis. Using scanning electron and fluorescence microscopy as well as mass spectrometry, we investigate the potential of this inflammagen to interact with platelets and fibrin(ogen) directly to cause blood hypercoagulation. Using platelet poor plasma (PPP), we show that spike protein may interfere with blood flow. Mass spectrometry also showed that when spike protein S1 is added to healthy PPP, it results in structural changes to β and γ fibrin(ogen), complement 3, and prothrombin. These proteins were substantially resistant to trypsinization, in the presence of spike protein S1. Here we suggest that, in part, the presence of spike protein in circulation may contribute to the hypercoagulation in COVID-19 positive patients and may cause substantial impairment of fibrinolysis. Such lytic impairment may result in the persistent large microclots we have noted here and previously in plasma samples of COVID-19 patients. This observation may have important clinical relevance in the treatment of hypercoagulability in COVID-19 patients.
An attempt to understand and explain a peculiarity that was observed for curly fibres during experimentation revealed disparate literature reporting on several key issues. The phenotypical nature of curly fibres is only accurately understood within the larger scope of hair fibres, which are highly complex biological structures. A brief literature search produced thousands of research items. Besides the large amount of information on the topic, there was also great variability in research focus. From our review, it appeared that the complexity of hair biology, combined with the variety of research subtopics, often results in uncertainty when relating different aspects of investigation. During the literature investigation, we systematically categorized elements of curly hair research into three basic topics: essentially asking why fibres curl, what the curly fibre looks like and how the curly fibre behaves. These categories were subsequently formalized into a curvature fibre model that is composed of successive but distinctive tiers comprising the elements in curly hair research. The purpose of this paper is twofold: namely to present (i) a literature review that explores the different aspects of curly human scalp hair and (ii) the curvature fibre model as a systemized approach to investigating curly hair.
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) -induced infection, the cause of coronavirus disease 2019 (COVID-19), is characterized by unprecedented clinical pathologies. One of the most important pathologies, is hypercoagulation and microclots in the lungs of patients. Here we study the effect of isolated SARS-CoV-2 spike protein S1 subunit as potential inflammagen sui generis. Using scanning electron and fluorescence microscopy as well as mass spectrometry, we investigate the potential of this inflammagen to interact with platelets and fibrin(ogen) directly to cause blood hypercoagulation. Using platelet poor plasma (PPP), we show that spike protein may interfere with blood flow. Mass spectrometry also showed that when spike protein S1 is added to healthy PPP, it results in structural changes to β and γ fibrin(ogen), complement 3, and prothrombin. These proteins were substantially resistant to trypsinization, in the presence of spike protein S1. Here we suggest that, in part, the presence of spike protein in circulation may contribute to the hypercoagulation in COVID-19 positive patients and may cause substantial impairment of fibrinolysis. Such lytic impairment may result in the persistent large microclots we have noted here and previously in plasma samples of COVID-19 patients. This observation may have important clinical relevance in the treatment of hypercoagulability in COVID-19 patients.
Essentials• Clotting in cerebral aneurysms is a process that can either stabilize the aneurysm or lead to rupture.• A patient-specific computational model capable of predicting cerebral aneurysm thrombosis is presented.• The different clotting outcomes highlight the importance of personalization of treatment.• Once validated, the model can be used to tailor treatment and to clarify clotting processes in aneurysms.Summary. Background: In cerebral aneurysms, clotting can either stabilize the aneurysm sac via aneurysm occlusion, or it can have a detrimental effect by giving rise to embolic occlusion. Objective: The work presented in this study details the development of an in silico model that combines all the salient, clinically relevant features of cerebral aneurysm clotting. A comprehensive computational model of clotting that accounts for biochemical complexity coupled with three-dimensional hemodynamics in image-derived patient aneurysms and in the presence of virtually implanted interventional devices is presented. Methods: The model is developed and presented in two stages. First, a two-dimensional computational model of clotting is presented for an idealized geometry. This enables verification of the methods with existing, physiological data before the pathological state is considered.This model is used to compare the results predicted by two different underlying biochemical cascades. The twodimensional model is then extended to image-derived, three-dimensional aneurysmal topologies by incorporating level set methods, demonstrating the potential use of this model. Results and conclusion: As a proof of concept, comparisons are then made between treated and untreated aneurysms. The prediction of different clotting outcomes for different patients demonstrates that with further development, refinement and validation, this methodology could be used for patient-specific interventional planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.