Over recent years, timetable programming in academic settings has become particularly challenging due to such factors as the growing number of students, the variety of lectures, the inadequacy of educational facilities in some areas, and the incorporation of teachers and students’ preferences into the schedule. Many researchers, therefore, have been formulating the problem of timetabling lectures using different methods. In this research, a multiobjective mixed-integer programming model was developed to provide a timetable for the postgraduate courses at the Industrial Engineering Department of Islamic Azad University, Najafabad Branch (IAUN). The proposed model minimized the violation of the lecturers and educational priorities, the student travel time between classes, and the classes’ surplus capacity. To convert the multiobjective model into a single one, the ε-constraint method was adopted, and the model’s accuracy and feasibility were examined through a real example solved by the CPLEX solver of GAMS software. The results approved the efficiency of this model in preparing a timetable for university lectures.
The purpose of this article is to consider system safety and reliability analysts to evaluate the risk associated with item failure modes. The factors considered in traditional failure mode and effect analysis (FMEA) for risk assessment are frequency of occurrence (O), severity (S) and detectability (D) of an item failure mode. Because of the subjective, qualitative and dynamic nature of the information and to make the analysis more consistent and logical, an approach using fuzzy logic and system dynamics methodology is proposed. In the proposed approach, severity is replaced by dependency parameter then, these parameters are represented as members of a fuzzy set fuzzified by using appropriate membership functions and they are evaluated in fuzzy inference engine, which makes use of well-defined rule base and fuzzy logic operations to determine the value of parameters related to system's transfer functions. The fuzzy conclusion is then defuzzified to get transfer function for risk and failure rate. The applicability of the proposed approach is investigated with the help of an illustrative case study from the automotive industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.