The mechanisms of pyridoxal 5′-phosphate (PLP) dependent enzymes require substrates to form covalent “external aldimine” intermediates, which absorb light strongly between 410 nm and 430 nm. Aspartate aminotransferase (AAT) is a prototypical PLP dependent enzyme that catalyzes the reversible interconversion of aspartate and α-ketoglutarate with oxalacetate and glutamate. From kinetic isotope effects, it is known that deprotonation of the aspartate external aldimine Cα-H bond to give a carbanionic quinonoid intermediate is partially rate limiting in the thermal AAT reaction. We show that excitation of the 430 nm external aldimine absorption band increases the steady-state catalytic activity of AAT, which is attributed to the photoenhancement of Cα-H deprotonation based on studies with Schiff bases in solution. Blue light (250 mW) illumination gives an observed 2.3-fold rate enhancement for WT AAT activity, a 530-fold enhancement for the inactive K258A mutant, and a 58,600-fold enhancement for the PLP-Asp Schiff base in water. These different levels of enhancement correlate with the intrinsic reactivities of the Cα-H bond in the different environments, with the less reactive Schiff bases exhibiting greater enhancement. Time-resolved spectroscopy, ranging from femtoseconds to minutes, was used to investigate the nature of the photoactivation of Cα-H bond cleavage in PLP-amino acid Schiff bases both in water and bound to AAT. Unlike the thermal pathway, the photoactivation pathway involves a triplet state with a Cα-H pKa that is estimated to be between 11 and 19 units lower than the ground state for the PLP-Val Schiff base in water.
The aspartate aminotransferase (AAT) enzyme utilizes the chromophoric pyridoxal 5'-phosphate (PLP) cofactor to facilitate the transamination of amino acids. Recently, we demonstrated that, upon exposure to blue light, PLP forms a reactive triplet state that rapidly (in microseconds) generates the high-energy quinonoid intermediate when bound to PLP-dependent enzymes [J. Am. Chem. Soc.2010, 132 (47), 16953-16961]. This increases the net catalytic activity (k(cat)) of AAT, since formation of the quinonoid is partially rate limiting via the thermally activated enzymatic pathway. The magnitude of observed photoenhancement initially scales linearly with pump fluence; however when a critical threshold is exceeded, the photoactivity saturates and is even suppressed at greater excitation fluences. The photodynamic mechanisms associated with this suppression behavior are characterized with the use of ultrafast multipulse pump-dump-probe and pump-repump-probe transient absorption techniques in combination with complementary two-color, steady-state excitation assays. Via multistate kinetic modeling of the transient ultrafast data and the steady-state assay data, the nonmonotonic incident power dependence of the photoactivty in AAT is decomposed into contributions from high-intensity dumping of the excited singlet state and repumping of the excited triplet state with induces the repopulation of the ground state via rapid intersystem crossing in the higher-lying triplet electronic manifold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.