Abstract:The imperialist competitive algorithm (ICA) is a recent global search strategy developed based on human social evolutionary phenomena in the real world. However, the ICA has the drawback of trapping in local optimum solutions when used for high-dimensional or complex multimodal functions. In order to deal with this situation, in this paper an improved ICA, named GICA, is proposed that can enhance ICA performance by using a new assimilation method and establishing a relationship between countries inspired by the globalization concept in the real world. The proposed algorithm is evaluated using a set of well-known benchmark functions for global optimization. Obtained results show the efficiency and effectiveness of the method and show that this strategy can deal with the local optimum problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.