Background
In silico methods for toxicity prediction have increased significantly in recent years due to the 3Rs principle. This also applies to predicting reproductive toxicology, which is one of the most critical factors in pesticide approval. The widely used quantitative structure–activity relationship (QSAR) models use experimental toxicity data to create a model that relates experimentally observed toxicity to molecular structures to predict toxicity. Aim of the study was to evaluate the available prediction models for developmental and reproductive toxicity regarding their strengths and weaknesses in a pesticide database.
Methods
The reproductive toxicity of 315 pesticides, which have a GHS classification by ECHA, was compared with the prediction of different in silico models: VEGA, OECD (Q)SAR Toolbox, Leadscope Model Applier, and CASE Ultra by MultiCASE.
Results
In all models, a large proportion (up to 77%) of all pesticides were outside the chemical space of the model. Analysis of the prediction of remaining pesticides revealed a balanced accuracy of the models between 0.48 and 0.66.
Conclusion
Overall, predictions were only meaningful in rare cases and therefore always require evaluation by an expert. The critical factors were the underlying data and determination of molecular similarity, which offer great potential for improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.