The resistivity of the heavy-fermion superconductor CeCoIn5 was measured as a function of temperature, down to 25 mK and in magnetic fields of up to 16 T applied perpendicular to the basal plane. With increasing field, we observe a suppression of the non-Fermi liquid behavior, rho approximately T, and the development of a Fermi liquid state, with its characteristic rho=rho(0)+AT2 dependence. The field dependence of the T2 coefficient shows critical behavior with an exponent of 1.37. This is evidence for a field-induced quantum critical point (QCP), occurring at a critical field which coincides, within experimental accuracy, with the superconducting critical field H(c2). We discuss the relation of this field-tuned QCP to a change in the magnetic state, seen as a change in magnetoresistance from positive to negative, at a crossover line that has a common border with the superconducting region below approximately 1 K.
The Hall coefficient RH of the cuprate superconductor YBa2Cu3Oy was measured in magnetic fields up to 60 T for a hole concentration p from 0.078 to 0.152, in the underdoped regime. In fields large enough to suppress superconductivity, RH(T ) is seen to go from positive at high temperature to negative at low temperature, for p > 0.08. This change of sign is attributed to the emergence of an electron pocket in the Fermi surface at low temperature. At p < 0.08, the normal-state RH(T ) remains positive at all temperatures, increasing monotonically as T → 0. We attribute the change of behaviour across p = 0.08 to a Lifshitz transition, namely a change in Fermi-surface topology occurring at a critical concentration pL = 0.08, where the electron pocket vanishes. The loss of the high-mobility electron pocket across pL coincides with a ten-fold drop in the conductivity at low temperature, revealed in measurements of the electrical resistivity ρ at high fields, showing that the so-called metal-insulator crossover of cuprates is in fact driven by a Lifshitz transition. It also coincides with a jump in the in-plane anisotropy of ρ, showing that without its electron pocket the Fermi surface must have strong two-fold in-plane anisotropy. These findings are consistent with a Fermi-surface reconstruction caused by a unidirectional spin-density wave or stripe order. PACS numbers:arXiv:1009.2078v2 [cond-mat.supr-con]
In the quest to increase the critical temperature T c of cuprate superconductors, it is essential to identify the factors that limit the strength of superconductivity. The upper critical field H c2 is a fundamental measure of that strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. Here we show that the thermal conductivity can be used to directly detect H c2 in the cuprates YBa 2 Cu 3 O y , YBa 2 Cu 4 O 8 and Tl 2 Ba 2 CuO 6 þ d , allowing us to map out H c2 across the doping phase diagram. It exhibits two peaks, each located at a critical point where the Fermi surface of YBa 2 Cu 3 O y is known to undergo a transformation. Below the higher critical point, the condensation energy, obtained directly from H c2 , suffers a sudden 20-fold collapse. This reveals that phase competitionassociated with Fermi-surface reconstruction and charge-density-wave order-is a key limiting factor in the superconductivity of cuprates.
Heat transport in the cuprate superconductors YBa2Cu3Oy and La2−xSrxCuO4 was measured at low temperatures as a function of doping. A residual linear term κ0/T is observed throughout the superconducting region and it decreases steadily as the Mott insulator is approached from the overdoped regime. The low-energy quasiparticle gap extracted from κ0/T is seen to scale closely with the pseudogap. The ubiquitous presence of nodes and the tracking of the pseudogap shows that the overall gap remains of the pure d-wave form throughout the phase diagram, which excludes the possibility of a complex component (ix) appearing at a putative quantum phase transition and argues against a non-superconducting origin to the pseudogap. A comparison with superfluid density measurements reveals that the quasiparticle effective charge is weakly dependent on doping and close to unity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.