gamma Interferon (IFN-gamma) caused remarkable increases in class I (H-2Kk) and class II (I-Ak) antigens throughout the body by 6-9 d. Heart, kidney, and adrenals showed increases of 4-8 times their previous levels of class I antigen content, while the pancreas and small intestine increased 13-17-fold. Lesser increases were found in spleen, liver, and lung, which showed higher resting antigenic potency. Increases of class II antigenicity of 6-10-fold were found in heart, kidney, pancreas, lung, liver, adrenal, and small intestine, with lesser increases in thymus and spleen, and none in lymph node. Topographical analysis revealed that IFN-gamma induced class I and II antigens on most tissues in a highly selective fashion. For example, the renal proximal tubules expressed large amounts of both class I and II antigens, whereas the distal tubules and collecting ducts did not. In some epithelial cells class I and II determinants were induced only on the basal aspects of the cell membrane. IFN-gamma caused a remarkable increase in class II-positive dendritic cells in the liver, pancreas, salivary glands, and thyroid. Whether these cells were of local or systemic origin is uncertain, but the finding of a simultaneous depletion of dendritic cells from lymph nodes and spleen raises the possibility that they may have been derived, at least in part, from these sites. The dynamic and selective induction of class I and II antigen expression by IFN-gamma is likely to be important in regulation of the immune response in tissues.
Insulin is a polypeptide hormone of major physiological importance in the regulation of fuel homeostasis in animals (reviewed in refs 1,2). It is synthesized by the beta-cells of pancreatic islets, and circulating insulin levels are regulated by several small molecules, notably glucose, amino acids, fatty acids and certain pharmacological agents. Insulin consists of two polypeptide chains (A and B, linked by disulphide bonds) that are derived from the proteolytic cleavage of proinsulin, generating equimolar amounts of the mature insulin and a connecting peptide (C-peptide). Humans, like most vertebrates, contain one proinsulin gene, although several species, including mice and rats, have two highly homologous insulin genes. We have studied the regulation of serum insulin levels and of insulin gene expression by generating a series of transgenic mice containing the human insulin gene. We report here that the human insulin gene is expressed in a tissue-specific manner in the islets of these transgenic mice, and that serum human insulin levels are properly regulated by glucose, amino acids and tolbutamide, an oral hypoglycaemic agent.
In a variety of human genetic diseases, replacement of the absent or defective protein provides significant therapeutic benefits. As a model for a somatic cell gene therapy system, cultured murine fibroblasts were transfected with a human growth hormone (hGH) fusion gene and cells from one of the resulting clonal lines were subsequently implanted into various locations in mice. Such implants synthesized and secreted hGH, which was detectable in the serum. The function of the implants depended on their location and size, and on the histocompatibility of the donor cells with their recipients. The expression of hGH could be modified by addition of regulatory effectors, and, with appropriate immunosuppression, the implants survived for more than 3 months. This approach to gene therapy, here termed "transkaryotic implantation," is potentially applicable to many genetic diseases in that the transfected cell line can be extensively characterized prior to implantation, several anatomical sites are suitable for implantation, and regulated expression of the gene of therapeutic interest can be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.