A phenol-degrading bacterium, Ralstonia eutropha E2, was grown in Luria-Bertani (LB) medium or in an inorganic medium (called MP) supplemented with phenol and harvested at the late-exponential-growth phase. Phenol-acclimated activated sludge was inoculated with the E2 cells immediately after harvest or after starvation in MP for 2 or 7 days. The densities of the E2 populations in the activated sludge were then monitored by quantitative PCR. The E2 cells grown on phenol and starved for 2 days (P-2 cells) survived in the activated sludge better than those treated differently: the population density of the P-2 cells 7 days after their inoculation was 50 to 100 times higher than the population density of E2 cells without starvation or that with 7-day starvation. LB medium-grown cells either starved or nonstarved were rapidly eliminated from the sludge. The P-2 cells showed a high cell surface hydrophobicity and retained metabolic activities. Cells otherwise prepared did not have one of these two features. From these observations, it is assumed that hydrophobic cell surface and metabolic activities higher than certain levels were required for the inoculated bacteria to survive in the activated sludge. Reverse transcriptase PCR analyses showed that the P-2 cells initiated the expression of phenol hydroxylase within 1 day of their inoculation into the sludge. These results suggest the utility of a short starvation treatment for improving the efficacy of bioaugumentation.
Our previous study showed that an activated-sludge process broke down at the phenol-loading rate of 1.5 g l(-1) day(-1), when non-flocculating bacteria (called R6T and R10) overgrew the sludge, resulting in a sludge washout. In this study, we attempted to circumvent this breakdown problem by reclaiming the consortium structure. Activated sludge was fed phenol, and the phenol-loading rate was increased stepwise from 0.5 g l(-1) day(-1) to 1.0 g l(-1) day(-1) and then to 1.5 g l(-1) day(-1). Either galactose or glucose (at 0.5 g l(-1) day(-1)) was also supplied to the activated sludge from the phenol-loading rate of 1.0 g l(-1) day(-1). Pure culture experiments have suggested galactose to be a preferential substrate for a floc-forming bacterium (R6F) that predominantly degrades phenol under low phenol-loading conditions. Supplying galactose allowed sustainment of the R6F population and suppression of the overgrowth of R6T and R10 at the phenol-loading rate of 1.5 g l(-1) day(-1). This measure allowed the activated-sludge process to treat phenol at a phenol-loading rate up to 1.5 g l(-1) day(-1), although it broke down at 2.0 g l(-1) day(-1). In contrast, supplying glucose reduced the R6F population and allowed the activated-sludge process to break down at the phenol-loading rate of 1.0 g l(-1) day(-1). This study demonstrated that reclamation of the activated-sludge consortium by selective biostimulation of the floc-forming population improved the phenol-treating ability of the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.