In this paper, we develop a new technique on a time scale T to prove that the self-improving properties of the Muckenhoupt weights hold. The results contain the properties of the weights when T=R and when T=N, and also can be extended to cover different spaces such as T=hN, T=qN, etc. The results will be proved by employing some new refinements of Hardy’s type dynamic inequalities with negative powers proven and designed for this purpose. The results give the exact value of the limit exponent as well as the new constants of the new classes.
In this paper, we prove some properties of weighted Cesàro and Copson sequences spaces by establishing some factorization theorems. The results lead to two-sided norm discrete inequalities with best possible constants and also give conditions for the boundedness of the generalized discrete weighted Hardy and Copson operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.