ObjectivesIn order to investigate the applicability of routine 10s electrocardiogram (ECG) recordings for time-domain heart rate variability (HRV) calculation we explored to what extent these (ultra-)short recordings capture the “actual” HRV.MethodsThe standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive differences (RMSSD) were measured in 3,387 adults. SDNN and RMSSD were assessed from (ultra)short recordings of 10s(3x), 30s, and 120s and compared to 240s–300s (gold standard) measurements. Pearson’s correlation coefficients (r), Bland-Altman 95% limits of agreement and Cohen’s d statistics were used as agreement analysis techniques.ResultsAgreement between the separate 10s recordings and the 240s-300s recording was already substantial (r = 0.758–0.764/Bias = 0.398–0.416/d = 0.855–0.894 for SDNN; r = 0.853–0.862/Bias = 0.079–0.096/d = 0.150–0.171 for RMSSD), and improved further when three 10s periods were averaged (r = 0.863/Bias = 0.406/d = 0.874 for SDNN; r = 0.941/Bias = 0.088/d = 0.167 for RMSSD). Agreement increased with recording length and reached near perfect agreement at 120s (r = 0.956/Bias = 0.064/d = 0.137 for SDNN; r = 0.986/Bias = 0.014/d = 0.027 for RMSSD). For all recording lengths and agreement measures, RMSSD outperformed SDNN.ConclusionsOur results confirm that it is unnecessary to use recordings longer than 120s to obtain accurate measures of RMSSD and SDNN in the time domain. Even a single 10s (standard ECG) recording yields a valid RMSSD measurement, although an average over multiple 10s ECGs is preferable. For SDNN we would recommend either 30s or multiple 10s ECGs. Future research projects using time-domain HRV parameters, e.g. genetic epidemiological studies, could calculate HRV from (ultra-)short ECGs enabling such projects to be performed at a large scale.
Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (−0.74
Objectives To describe the normal appearance and study the biometry of the fetal cerebellar vermis by threedimensional (3D) volume contrast imaging in the coronal (C-) plane (VCI-C).
Methods
Genome-wide association studies have detected many loci underlying
susceptibility to disease, but most of the genetic factors that contribute to
disease susceptibility remain unknown. Here we provide evidence that part of the
missing heritability can be explained by an overestimation of heritability. We
estimated the heritability of twelve complex human diseases using family history
of disease in 1,555,906 white European individuals from the UK Biobank.
Estimates using simple family-based statistical models were inflated on average
by ~47% comparing with those from Structural Equation Models (SEM) that
specifically accounted for shared familial environmental factors. In addition,
heritabilities using SNP data explained an average of 44.2% of the simple
family-based estimates across diseases and an average of 57.3% of SEM estimated
heritability and accounted for almost all of the SEM heritability for
hypertension. Our results show that both genetics and familial environment make
substantial contributions to familial clustering of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.