The decrease of the intrinsic tryptophan fluorescence intensity of purified influenza (X31 strain) hemagglutinin (HA) was used to monitor the low pH-induced conformational change of this protein. The kinetics of the fluorescence decrease depended strongly on the pH. At pH optimal for fusion, the change in tryptophan fluorescence was fast and could be fitted to a monoexponential function. We measured a rate constant of 5.78 s-1 (t1/2 = 120 ms) at pH 4.9 using rapid stopped-flow mixing. Under suboptimal conditions (higher pH), the rate constant was decreased by an order of magnitude. In addition, a slow component appeared and the fluorescence decrease followed a sum of two exponentials. The kinetics of conformational changes were compared with those of the fusion of influenza virus with red blood cell membranes as assessed by the R18-dequenching assay. At optimal pH the HA conformational change was not rate-limiting for the fusion process. However, at sub-optimal pH, the slow transition to the fusogenic conformational of HA resulted in slower kinetics and decreased extent of fusion.
Membrane fusion of influenza virus is mediated by a conformational change of the viral membrane protein hemagglutinin (HA) triggered by low pH. By near UV CD spectroscopy, which is sensitive to the arrangement and mobility of aromatic amino acids in proteins, we have monitored continuously with a time resolution of 5 s the kinetics of structural alterations of the ectodomain of HA isolated from different influenza virus strains (H1 (A/PR 8/34), H2 (A/Japan), and H3 (X31)). To establish a functional correlation to structural alterations of the HA ectodomain reflected by the CD, we have measured the kinetics of the virus-erythrocyte fusion and of the inactivation of fusion by low pH preincubation of viruses. At acidic pH we found a multiphasic behavior of the CD signal recorded at 283 nm. Upon lowering the pH we detected first an increase of the CD amplitude, which is associated with the formation of a fusion-competent state of HA. The initial increase was followed by a continuous decline of CD amplitude, which can be ascribed to a transformation into a fusion-inactivated conformation that is in its early phase reversible as found for A/Japan. The half-time of the different phases of the CD signal depended on the virus strain, the temperature, and the acidic pH. The results support recent hypotheses that the fusion-competent conformation is an intermediate of the fusion-inactivated structure of HA.The fusion of the viral and the endosomal membranes subsequent to the endocytic uptake of influenza virus is mediated by the integral membrane protein hemagglutinin (HA). 1 HA is a homotrimeric glycoprotein that consists of the two subunits, HA1, bearing the receptor binding site, and HA2, anchored with its C terminus in the viral membrane. At the acidic pH of endosomes, a conformational change of the hemagglutinin ectodomain is triggered (1) that activates its fusion capacity (2, 3). The three-dimensional structure of the ectodomain of HA (X31) at neutral pH is known from x-ray crystallography with a resolution of 3 Å (4). Although the fusion active conformation is still unknown, one of its characteristics is, as has been shown, e.g. by anit-peptide-antibodies (1, 5), the exposure of the highly conserved N terminus of the HA2 subunit, the "fusion sequence," which is originally buried within the stem of the trimer (4). Based on the x-ray crystal structure of a fragment of the HA ectodomain from X31 in its low pH form, Wiley and co-workers (6) suggested that the fusion sequence moves toward the top of the ectodomain by the formation of a long ␣-helix in the HA2 subunit at low pH, thereby extending the trimer stem straight up. Studies with synthetic peptides (7) predicted that this long ␣-helix is formed by a transition of a loop region of HA into an ␣-helix at low pH.However, when incubated at low pH in the absence of target membranes, influenza virus can rapidly lose its fusogenic properties (8 -11). The degree and kinetics of this inactivation is virus strain-specific (9, 12, 13). Clustering of conformationally altered ...
The conformational and thermal stability of full-length hemagglutinin (HA) of influenza virus (strain X31) has been investigated using a combination of differential scanning calorimetry (DSC), analytical ultracentrifugation, fluorescence, and circular dichroism (CD) spectroscopy as a function of pH. HA sediments as a rosette comprised of 5-6 trimers (31-35 S) over the pH range of 7.4-5.4. The DSC profile of HA in the native state at pH 7.4 is characterized by a single cooperative endotherm with a transition temperature (Tm) of 66 degrees C and unfolding enthalpy (DeltaH(cal)) of 800 kcal x (mol of trimer)(-1). Upon acidification to pH 5.4, there is a significant decrease in the transition temperature (from 66 to 45 degrees C), unfolding enthalpy [from 800 to 260 kcal x (mol of trimer)(-1)], and DeltaH(cal)/DeltaH(vH) ratio (from 3.0 to approximately 1.3). Whereas the far- and near-UV ellipticities are maintained over this pH range, there is an acid-induced increase in surface hydrophobicity and decrease in intrinsic tryptophanyl fluorescence. The major contribution to the DSC endotherm arises from unfolding HA1 domains. The relationship between acid-induced changes in thermal stability and the fusion activity of HA has been examined by evaluating the kinetics and extent of fusion of influenza virus with erythrocytes over the temperature and pH range of the DSC measurements. Surprisingly, X31 influenza virus retains its fusion activity at acidic pH and temperatures significantly below the unfolding transition of HA. This finding is consistent with the notion that the fusion activity of influenza virus may involve structural changes of only a small fraction of HA molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.