Aims. We investigate how magnetic properties of Magellanic-type and perturbed objects are related to star-forming activity, galactic type, and mass. Methods. We present radio and magnetic properties of five Magellanic-type and two peculiar low-mass galaxies observed at 4.85 and/or 8.35 GHz with the Effelsberg 100 m telescope. The sample is extended to 17 objects by including five Magellanic-type galaxies and five dwarf ones.Results. The distribution of the observed radio emission of low-mass galaxies at 4.85/8.35 GHz is closely connected with the galactic optical discs, which are independent for unperturbed galaxies and those which show signs of tidal interactions. The strengths of total magnetic field are within 5−9 μG, while the ordered fields reach 1−2 μG, and both these values are larger than in typical dwarf galaxies and lower than in spirals. The magnetic field strengths in the extended sample of 17 low-mass galaxies are well correlated with the surface density of star formation rate (correlation coefficient of 0.87) and manifest a power-law relation with an exponent of 0.25 ± 0.02 extending a similar relation found for dwarf galaxies. We claim that the production of magnetic energy per supernova event is very similar for all the various galaxies. It constitutes about 3% (10 49 erg) of the individual supernovae energy release. We show that the total magnetic field energy in galaxies is almost linearly related to the galactic gas mass, which indicates equipartition of the magnetic energy and the turbulent kinetic energy of the interstellar medium. The Magellanic-type galaxies fit very well with the radio-infrared relation constructed for surface brightness of galaxies of various types, including bright spirals and interacting objects (with a slope of 0.96 ± 0.03 and correlation coefficient of 0.95). We found that the typical far-infrared relation based on luminosity of galaxies is tighter and steeper but more likely to inherit a partial correlation from a tendency that larger objects are also more luminous. Conclusions.The estimated values of thermal fractions, radio spectral indices, and magnetic field strengths of the Magellanic-type galaxies are between the values determined for grand-design spirals and dwarf galaxies. The confirmed magnetic field-star formation and radio-infrared relations for low-mass galaxies point to similar physical processes that must be at work in all galaxies. More massive, larger galaxies have usually stronger magnetic fields and larger global star formation rates, but we show that their values of magnetic energy release per supernova explosion are still similar to those of dwarf galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.