In this work, we propose an extension of the algebraic formulation of the Tau method for the numerical solution of the nonlinear VolterraHammerstein integral equations. This extension is based on the operational Tau method with arbitrary polynomial basis functions for constructing the algebraic equivalent representation of the problem. This representation is an special semi lower triangular system whose solution gives the components of the vector solution. We will show that the operational Tau matrix representation for the integration of the nonlinear function can be represented by an upper triangular Toeplitz matrix. Finally, numerical results are included to demonstrate the validity and applicability of the method and some comparisons are made with existing results. Our numerical experiments show that the accuracy of the Tau approximate solution is independent of the selection of the basis functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.