Seawater is constantly circulating through oceanic basement as a low-temperature hydrothermal fluid (<150°C). In cases when ultramafic rocks are exposed to the fluids, for instance during the initial phase of subduction, ferromagnesian minerals are altered in contact with the water, leading to high pH and formation of secondary magnesium hydroxide, among other -brucite, that may scavenge borate and phosphate from seawater. The high pH may promote abiotic formation of pentoses, particularly ribose. Pentoses are stabilized by borate, since cyclic pentoses form a less reactive complex with borate. Analyses have shown that borate occupies the 2' and 3' positions of ribose, thus leaving the 5' position available for reactions like phosphorylation. The purine coding elements (adenine, in particular) of RNA may be formed in the same general hydrothermal environments of the seafloor.
Integrated Ocean Drilling Program Expedition 301 was preceded during 2000 and 2002 by three surveys that helped to delineate seafloor and basement relief, sediment thickness, and the nature of ridge-flank hydrothermal conditions and processes on the eastern flank of the Juan de Fuca Ridge. These surveys generated swath map, seismic, and thermal data used to select locations for primary and secondary drilling targets, building from several decades of earlier work. We show compilations and examples of data from several characteristic settings in and around the Expedition 301 work area and use these observations to evaluate sedimentation patterns and thermal conditions in basement. There remain important unanswered questions in this area concerning fluid circulation within the upper oceanic crust, the magnitude of lithospheric heat input, the quantitative significance of advective heat loss from the crust, and relations between basement relief, sedimentation, and sediment alteration. These questions may be resolved through collection of a modest amount of additional data focusing on a few critical locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.