The leading edge region of a first-stage stator vane experiences high heat transfer rates, especially near the endwall, making it very important to get a better understanding of the formation of the leading edge vortex. In order to improve numerical predictions of the complex endwall flow, benchmark quality experimental data are required. To this purpose, this study documents the endwall heat transfer and static pressure coefficient distribution of a modern stator vane for two different exit Reynolds numbers (Reex = 6 × 105 and 1.2 × 106). In addition, laser-Doppler velocimeter measurements of all three components of the mean and fluctuating velocities are presented for a plane in the leading edge region. Results indicate that the endwall heat transfer, pressure distribution, and flowfield characteristics change with Reynolds number. The endwall pressure distributions show that lower pressure coefficients occur at higher Reynolds numbers due to secondary flows. The stronger secondary flows cause enhanced heat transfer near the trailing edge of the vane at the higher Reynolds number. On the other hand, the mean velocity, turbulent kinetic energy, and vorticity results indicate that leading edge vortex is stronger and more turbulent at the lower Reynolds number. The Reynolds number also has an effect on the location of the separation point, which moves closer to the stator vane at lower Reynolds numbers.
A first-stage stator vane experiences high heat transfer rates, particularly near the endwall, where strong secondary flows occur. In order to improve numerical predictions of the complex endwall flow at low-speed conditions, benchmark quality experimental data are required. This study documents the flowfield in the endwall region of a stator vane that has been scaled up by a factor of nine while matching an engine exit Reynolds number of Reex=1.2×106. Laser Doppler velocimeter (LDV) measurements of all three components of the mean and fluctuating velocities are presented for several flow planes normal to the turbine vane. Measurements indicate that downstream of the minimum static pressure location on the suction surface of the vane, an attenuated suction side leg of the horseshoe vortex still exists. At this location, the peak turbulent kinetic energy coincides with the center of the passage vortex location. These flowfield measurements were also related to previously reported convective heat transfer coefficients on the endwall showing that high Stanton numbers occur where the passage vortex brings mainstream fluid toward the vane surface. [S0889-504X(00)00803-5]
The leading edge region of a first stage stator vane experiences high heat transfer rates especially near the end wall making it very important to get a better understanding of the formation of the leading edge vortex. In order to improve numerical predictions of the complex endwall flow, benchmark quality experimental data are required. To this purpose, this study documents the endwall heat transfer and static pressure coefficient distribution of a modern stator vane for two different exit Reynolds numbers (Reex = 6 × 105 and 1.2 × 106). In addition, laser Doppler velocimeter measurements of all three components of the mean and fluctuating velocities are presented for the stagnation plane in the leading edge region. Results indicate that the endwall heat transfer, pressure distribution and flowfield characteristics change with Reynolds number. The endwall pressure distributions show that lower pressure coefficients occur at the higher Reynolds number due to secondary flows. The stronger secondary flows cause enhanced heat transfer near the trailing edge of the vane at the higher Reynolds number. On the other hand the mean velocity, turbulent kinetic energy and vorticity results indicate that leading edge vortex is stronger and more turbulent at the lower Reynolds number. The Reynolds number also has an effect on the location of the separation point which moves closer to the stator vane at the lower Reynolds number.
A first stage stator vane experiences high heat transfer rates particularly near the end wall where strong secondary flows occur. In order to improve numerical predictions of the complex endwall flow at low speed conditions, benchmark quality experimental data are required. This study documents the flowfield in the endwall region of a stator vane that has been scaled up by a factor of nine while matching an engine exit Reynolds number of Reex = 1.2·106. Laser Doppler velocimeter (LDV) measurements of all three components of the mean and fluctuating velocities are presented for several flow planes normal to the turbine vane. Measurements indicate that downstream of the minimum static pressure location on the suction surface of the vane, an attenuated suction side leg of the horseshoe vortex still exists. At this location, the peak turbulent kinetic energy coincides with the center of the passage vortex location. These flowfield measurements were also related to previously reported convective heat transfer coefficients on the endwall showing that high Stanton numbers occur where the passage vortex brings mainstream fluid towards the vane surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.