In this era of High-Performance High computing systems, Large-scale Data Mining methodologies in the field of education have become a convenience to discover and extract knowledge from Databased of their respective educational archives. Typically, all educational institutions around the world maintain student data repositories. Attributes of students such as the name of the student, gender of student, age group (date of birth), religion, eligibility details, academic assessment details, etc. are kept in it. With this knowledge, in this paper, didactical data mining (DDM) is used to leverage the performance prediction of student and to analyse it proactively. As it is known, Classification and Clustering are the liveliest techniques in mining the required data. Hence, Bound Model of Clustering and Classification (BMCC) have been proposed in this research for most proficient educational data mining. Classification is one of the distinguished options in Data Mining to assign an object under some pre-defined classes according to their attributes, and hence it comes under a supervised learning problem. On the other side, clustering is considered as a non-supervised learning problem that involves in grouping up of objects with respect to some similarities. Moreover, this paper uses the dataset collected from Kerala Technological University-SNG College of Engineering (KTU_SNG) for performing the BMCC. An efficient J48 decision tree algorithm is used for classification and the kmeans algorithm is incorporated for clustering here and is optimised with Bootstrap Aggregation (Bagging). The implementation has been done and analysed with a data mining tool called WEKA (Waikato Environment for Knowledge Analysis), and the results are compared with some most used classifications such as Bayes Classifier (NB), Neural Network (Multilayer Perceptron MLP) and J48. It is provable from the results that the model, proposed in this provides high Precision Rate (PR), accuracy and robustness with less computational time, though the sample data set includes some missing values.
Educational Data Mining (EDM) is an interdisciplinary ingenuous research area that handles the development of methods to explore data arising in a scholastic fields. Computational approaches used by EDM is to examine scholastic data in order to study educational questions. As a result, it provides intrinsic knowledge of teaching and learning process for effective education planning. This paper conducts a comprehensive study on the recent and relevant studies put through in this field to date. The study focuses on methods of analysing educational data to develop models for improving academic performances and improving institutional effectiveness. This paper accumulates and relegates literature, identifies consequential work and mediates it to computing educators and professional bodies. We identify research that gives well-fortified advice to amend edifying and invigorate the more impuissant segment students in the institution. The results of these studies give insight into techniques for ameliorating pedagogical process, presaging student performance, compare the precision of data mining algorithms, and demonstrate the maturity of open source implements.
Classification techniques have sensed substantial attention in Information Engineering and Technology for the performance prediction and optimisation since few decades. The discovered accuracy of the Classification Model helps the institutional practices and student's performances. In this paper, a novel Ensemble-based Hybrid Classification Approach (EHCA) has been proposed to be managed to produce improved performance prediction. The mining process with new attributes based on student behaviours has also been incorporated, since it creates a great impact on their academic performances. Moreover, the performance of the students is analysed with a set of classifiers in Educational Data Mining (EDM) namely, Naive Bayesian, Support-Vector-Machine (SVM) and J48. Futuristic-bound Ensemble approach is employed for enhancing the classifier performances. Here, the futuristic methods of ensembles of Bagging, Classification Boosting and Stacking are used for optimising the results with more precision. Further, the process of Ensemble-based Hybrid Classification is analysed and tested with the dataset collected from Kerala Technological University-SNG College of Engineering (KTU_SNG). The results obtained are compared with the results obtained for utilized single classifiers and the EHCA on the basis of performance efficiency and classification accuracy. The work evidence the efficiency of the pro-posed approach and proves its reliability in Profound Performance Prediction and Optimisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.