We report on a bistable light transmission through a planar metamaterial composed of a metal pattern of weakly asymmetric elements placed on a nonlinear substrate. Such structure bears the Fano-type sharp resonance response of a trapped-mode excitation. The feedback required for bistability is provided by the coupling between the strong antiphased trapped-mode-resonance currents excited on the metal elements and the intensity of inner field in the nonlinear substrate.
We propose a mechanism to control propagation of a group of stable dissipative solitons in a nonlinear magneto-optic planar waveguide. The control is realized by means of a spatially inhomogeneous external magnetic field, which is induced by a set of direct conducting wires placed on the top of the guiding layer. The wires are extended in the direction of soliton propagation, and carry electric currents with particular piecewise constant profiles. In order to describe the soliton evolution the one-dimensional cubic-quintic complex Ginzburg-Landau equation has been adapted by tailoring an additional linear term, which is responsible for the magneto-optic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.