Hepatitis B virus (HBV) is a driver of hepatocellular carcinoma, and two viral products, X and large surface antigen (LHBS), are viral oncoproteins. During chronic viral infection, immune-escape mutants on the preS2 region of LHBS (preS2-LHBS) are gain-of-function mutations that are linked to preneoplastic ground glass hepatocytes (GGHs) and early disease onset of hepatocellular carcinoma. Here, we show that preS2-LHBS provoked calcium release from the endoplasmic reticulum (ER) and triggered stored-operated calcium entry (SOCE). The activation of SOCE increased ER and plasma membrane (PM) connections, which was linked by ER- resident stromal interaction molecule-1 (STIM1) protein and PM-resident calcium release- activated calcium modulator 1 (Orai1). Persistent activation of SOCE induced centrosome overduplication, aberrant multipolar division, chromosome aneuploidy, anchorage-independent growth, and xenograft tumorigenesis in hepatocytes expressing preS2- LHBS. Chemical inhibitions of SOCE machinery and silencing of STIM1 significantly reduced centrosome numbers, multipolar division, and xenograft tumorigenesis induced by preS2-LHBS. These results provide the first mechanistic link between calcium homeostasis and chromosome instability in hepatocytes carrying preS2-LHBS. Therefore, persistent activation of SOCE represents a novel pathological mechanism in HBV-mediated hepatocarcinogenesis.
Shugoshin-like protein 1 (Sgo1) is an essential protein in mitosis; it protects sister chromatid cohesion and thereby ensures the fidelity of chromosome separation. We found that the expression of Sgo1 mRNA was relatively low in normal tissues, but was upregulated in 82% of hepatocellular carcinoma (HCC), and correlated with elevated alpha-fetoprotein and early disease onset of HCC. The depletion of Sgo1 reduced cell viability of hepatoma cell lines including HuH7, HepG2, Hep3B, and HepaRG. Using time-lapse microscopy, we showed that hepatoma cells were delayed and ultimately die in mitosis in the absence of Sgo1. In contrast, cell viability and mitotic progression of immortalized cells were not significantly affected. Notably, mitotic cell death induced upon Sgo1 depletion was suppressed upon inhibitions of cyclin-dependent kinase-1 and Aurora kinase-B, or the depletion of mitotic arrest deficient-2. Thus, mitotic cell death induced upon Sgo1 depletion in hepatoma cells is mediated by persistent activation of the spindle assembly checkpoint. Together, these results highlight the essential role of Sgo1 in the maintenance of a proper mitotic progression in hepatoma cells and suggest that Sgo1 is a promising oncotarget for HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.