In the paper, for the Cauchy problem on the non-cutoff Boltzmann equation in torus, we establish the global-in-time Gevrey smoothness in velocity and space variables for a class of low-regularity mild solutions near Maxwellians with the Gevrey index depending only on the angular singularity. This together with [24] provides a self-contained well-posedness theory for both existence and regularity of global solutions for initial data of low regularity in the framework of perturbations. For the proof we treat in a subtle way the commutator between the regularization operators and the Boltzmann collision operator involving rough coefficients, and this enables us to combine the classical Hörmander's hypoelliptic techniques together with the global symbolic calculus established for the linearized Boltzmann operator so as to improve the regularity of solutions at positive time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.