Sulfadiazine, a potent antibacterial agent belonging to the group of antibiotics called sulfonamides, has been reported to be present in surface and groundwater. This study investigated the degradation of sulfadiazine in a goethite (α-FeOOH)−oxalate Fenton-like system under UV irradiation. The results showed that sulfadiazine could be effectively photodegraded by the goethite−oxalate Fenton-like system as a result of the formation of the highly oxidizing hydroxyl radicals, •OH. Among the iron oxides tested (α-FeOOH, γ-Fe2O3, γ-FeOOH, and α-Fe2O3), α-FeOOH was found to be the most effective. Degradation of sulfadiazine depended significantly on the pH and initial concentration of oxalic acid in the system, with optimal values of 3.5 and 4.0 mM, respectively, under UV irradiation. Five intermediate products of sulfadiazine degradation were identified using high-performance liquid chromatography−mass spectrometry (HPLC−MS), gas chromatography−mass spectrometry (GC−MS), and ion chromatography (IC), and a possible sulfadiazine degradation pathway in such a system was proposed. Organic sulfur and organic nitrogen mineralization were also observed, and the results indicated that cleavage of the sulfonylurea bridge was easier than the other potential cleavage bonds under the goethite−oxalate system. In addition, results from Biolog assays suggested that the ecological toxicity of the sulfadiazine solution was effectively reduced after degradation.
Effects of oxytetracycline (OTC) and sulfachloropyridazine (SCP), two of the widely used antibiotics in livestock production, on beneficial environmental microorganisms were studied. Shewanella decolorationis S12 was selected as the target bacteria for the role in reduction of Fe(III) and dye under anaerobic conditions. The results showed that the antibiotics significantly inhibited Fe(III) reduction and dye decoloration in the reduction system. The rates of Fe(II) formed (-r) were 3.6 and 0.2 mg/L/day for the OTC concentrations of 0-1 mg/L and 1-50 mg/L, respectively, with 1 mg/L as the turning point of the inhibition effect. The turning point of inhibition effect was much higher for SCP treatments, at 4 mg/L. The results also showed higher production values for adsorbed Fe(II) than soluble Fe(II) in OTC treatments, but the reverse occurred in the SCP treatments. The difference between the treatments could be due to higher sorption coefficients of OTC as compared to SCP. Transmission electron micrographs showed changes in cell structures of S. decolorationis S12 grown in medium with OTC. Detached cell walls and large vacuoles in internal cell contents were found in OTC-treated cells. The results of the present study indicated that the inhibition of antibiotic on the reduction activity of S. decolorationis S12 may be due to a decrease in live S. decolorationis S12 population and/or damages of their cell structure in this reduction system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.