In this study, we investigated the actions of high homocysteine (Hcy) levels (100 and 500 microM) on the cytoskeleton of C6 glioma cells. Results showed that the predominant cytoskeletal response was massive formation of actin-containing filopodia at the cell surface that could be related with Cdc42 activation and increased vinculin immunocontent. In cells treated with 100 microM Hcy, folic acid, trolox, and ascorbic acid, totally prevented filopodia formation, while filopodia induced by 500 microM Hcy were prevented by ascorbic acid and attenuated by folic acid and trolox. Moreover, competitive NMDA ionotropic antagonist DL-AP5 totally prevented the formation of filopodia in both 100 and 500 microM Hcy treated cells, while the metabotropic non-selective group I/II antagonist MCPG prevented the effect of 100 microM Hcy but only slightly attenuated the effect induced by of 500 microM Hcy on actin cytoskeleton. The competitive non-NMDA ionotropic antagonist CNQX was not able to prevent the effects of Hcy on the reorganization of actin cytoskeleton in the two concentrations used. Also, Hcy-induced hypophosphorylation of vimentin and glial fibrillary acidic protein (GFAP) and this effect was prevented by DL-AP5, MCPG, and CNQX. In conclusion, our results show that Hcy target the cytoskeleton of C6 cells probably by excitoxicity and/or oxidative stress mechanisms. Therefore, we could propose that the dynamic restructuring of the actin cytoskeleton of glial cells might contribute to the response to the injury provoked by elevated Hcy levels in brain.
The aim of the present work was to investigate the actions of a chemically induced chronic hyperhomocysteinemia model on intermediate filaments (IFs) of cortical and hippocampal neural cells and explore signaling mechanisms underlying such effects. Results showed that in hyperhomocysteinemic rats the expression of neural IF subunits was affected. In cerebral cortex, glial fibrillary acidic protein (GFAP) expression was donwregulated while in hippocampus high and middle molecular weight neurofilament subunits (NF-H and NF-M, respectively) were up-regulated. Otherwise, the immunocontent of IF proteins was unaltered in cerebral cortex while in hippocampus the immunocontent of cytoskeletal-associated low molecular weight neurofilament (NF-L) and NF-H subunits suggested a stoichiometric ratio consistent with a decreased amount of core filaments enriched in lateral projections. These effects were not accompanied by an alteration in IF phosphorylation. In vitro results showed that 500muM Hcy-induced protein phosphatases 1-, 2A- and 2B-mediated hypophosphorylation of NF subunits and GFAP in hippocampal slices of 17-day-old rats without affecting the cerebral cortex, showing a window of vulnerability of cytoskeleton in developing hippocampus. Ionotropic and metabotropic glutamate receptors were involved in this action, as well as Ca(2+) release from intracellular stores through ryanodine receptors. We propose that the mechanisms observed in the hippocampus of 17-day-old rats could support the neural damage observed in these animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.