Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic peptide with autocrine neuroprotective and paracrine anti-inflammatory properties in various models of acute neuronal damage and neurodegenerative diseases. Therefore, we examined a possible beneficial role of endogenous PACAP in the superoxide dismutase 1, SOD1(G93A), mouse model of amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disease particularly affecting somatomotor neurons. In wild-type mice, somatomotor and visceromotor neurons in brain stem and spinal cord were found to express the PACAP specific receptor PAC1, but only visceromotor neurons expressed PACAP as a potential autocrine source of regulation of these receptors. In SOD1(G93A) mice, only a small subset of the surviving somatomotor neurons showed induction of PACAP mRNA, and somatomotor neuron degeneration was unchanged in PACAP-deficient SOD1(G93A) mice. Pre-ganglionic sympathetic visceromotor neurons were found to be resistant in SOD1(G93A) mice, while pre-ganglionic parasympathetic neurons degenerated during ALS disease progression in this mouse model. PACAP-deficient SOD1(G93A) mice showed even greater pre-ganglionic parasympathetic neuron loss compared to SOD1(G93A) mice, and additional degeneration of pre-ganglionic sympathetic neurons. Thus, constitutive expression of PACAP and PAC1 may confer neuroprotection to central visceromotor neurons in SOD1(G93A) mice via autocrine pathways. Regarding the progression of neuroinflammation, the switch from amoeboid to hypertrophic microglial phenotype observed in SOD1(G93A) mice was absent in PACAP-deficient SOD1(G93A) mice. Thus, endogenous PACAP may promote microglial cytodestructive functions thought to drive ALS disease progression. This hypothesis was consistent with prolongation of life expectancy and preserved tongue motor function in PACAP-deficient SOD1(G93A) mice, compared to SOD1(G93A) mice. Given the protective role of PACAP expression in visceromotor neurons and the opposing effect on microglial function in SOD1(G93A) mice, both PACAP agonism and antagonism may be promising therapeutic tools for ALS treatment, if stage of disease progression and targeting the specific auto- and paracrine signaling pathways are carefully considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.