TNF-α (TNF), a pro-inflammatory cytokine is synthesized as a 26 kDa protein, anchors in the plasma membrane as transmembrane TNF (TmTNF), and is subjected to proteolysis by the TNF-α converting enzyme (TACE) to release the 15 kDa form of soluble TNF (sTNF). TmTNF and sTNF interact with 2 distinct receptors, TNF-R1 (p55) and TNF-R2 (p75), to mediate the multiple biologic effects of TNF described to date. Several anti-TNF biologics that bind to both forms of TNF and block their interactions with the TNF receptors are now approved for the treatment of a variety of immune-mediated diseases. Several reports suggest that binding of anti-TNFs to TmTNF delivers an outside-to-inside ‘reverse’ signal that may also contribute to the efficacy of anti-TNFs. Some patients, however, develop anti-TNF drug antibody responses (ADA or immunogenicity). Here, we demonstrate biochemically that TmTNF is transiently expressed on the surface of lipopolysaccharide-stimulated primary human monocytes, macrophages, and monocyte-derived dendritic cells (DCs) and expression of TmTNF on the cell surface is enhanced following treatment of cells with TAPI-2, a TACE inhibitor. Importantly, binding of anti-TNFs to TmTNF on DCs results in rapid internalization of the anti-TNF/TmTNF complex first into early endosomes and then lysosomes. The internalized anti-TNF is processed and anti-TNF peptides can be eluted from the surface of DCs. Finally, tetanus toxin peptides fused to anti-TNFs are presented by DCs to initiate T cell recall proliferation response. Collectively, these observations may provide new insights into understanding the biology of TmTNF, mode of action of anti-TNFs, biology of ADA response to anti-TNFs, and may help with the design of the next generation of anti-TNFs.
Antiangiogenic therapy is a clinically validated modality in cancer treatment. To date, all approved antiangiogenic drugs primarily inhibit the VEGF pathway. Delta-like ligand 4 (DLL4) has been identified as a potential drug target in VEGFindependent angiogenesis and tumor-initiating cell (TIC) survival. A dual-specific biologic targeting both VEGF and DLL4 could be an attractive strategy to improve the effectiveness of anti-VEGF therapy. ABT-165 was uniquely engineered using a proprietary dual-variable domain immunoglobulin (DVD-Ig) technology based on its ability to bind and inhibit both DLL4 and VEGF. In vivo, ABT-165 induced significant tumor growth inhibition compared with either parental antibody treatment alone, due, in part, to the disruption of functional tumor vasculature. In combination with chemotherapy agents, ABT-165 also induced greater antitumor response and outperformed anti-VEGF treatment. ABT-165 displayed nonlinear pharmacokinetic profiles in cynomolgus monkeys, with an apparent terminal half-life > 5 days at a target saturation dose. In a GLP monkey toxicity study, ABT-165 was well-tolerated at doses up to 200 mg/kg with non-adverse treatment-related histopathology findings limited to the liver and thymus. In summary, ABT-165 represents a novel antiangiogenic strategy that potently inhibits both DLL4 and VEGF, demonstrating favorable in vivo efficacy, pharmacokinetic, and safety profiles in preclinical models. Given these preclinical attributes, ABT-165 has progressed to a phase I study.
<p>Table S1: ABT-165 binding affinity; Table S2: ABT-165 in vitro potency; Table S3: Effect of VEGF on anti-DLL4 cellular potency of ABT-165; Table S4: Summary of in vivo efficacy; Table S5: Key safety findings of ABT-487 and ABT-165; Figure S1: Serum concentration-time profiles of ABT-165 in cynomolgus monkeys; Figure S2: Effect of antibody or antibody fragment valency on anti-DLL4 cellular potency; Figure S3: Effect of VEGF on the activity of DLL4 mAb and ABT-165 to downregulate DLL4 protein; Figure S4: Plasma levels of total soluble DLL4 and VEGF in cynomolgus monkeys after ABT-165 treatment.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.