We present a new modeling framework for sea-ice mechanics based on elasto-brittle (EB) behavior. the EB framework considers sea ice as a continuous elastic plate encountering progressive damage, simulating the opening of cracks and leads. As a result of long-range elastic interactions, the stress relaxation following a damage event can induce an avalanche of damage. Damage propagates in narrow linear features, resulting in a very heterogeneous strain field. Idealized simulations of the Arctic sea-ice cover are analyzed in terms of ice strain rates and contrasted to observations and simulations performed with the classical viscous–plastic (VP) rheology. the statistical and scaling properties of ice strain rates are used as the evaluation metric. We show that EB simulations give a good representation of the shear faulting mechanism that accommodates most sea-ice deformation. the distributions of strain rates and the scaling laws of ice deformation are well captured by the EB framework, which is not the case for VP simulations. These results suggest that the properties of ice deformation emerge from elasto-brittle ice-mechanical behavior and motivate the implementation of the EB framework in a global sea-ice model.
[1] Sea ice drift and deformation from models are evaluated on the basis of statistical and scaling properties. These properties are derived from two observation data sets: the RADARSAT Geophysical Processor System (RGPS) and buoy trajectories from the International Arctic Buoy Program (IABP). Two simulations obtained with the Louvain-la-Neuve Ice Model (LIM) coupled to a high-resolution ocean model and a simulation obtained with the Los Alamos Sea Ice Model (CICE) were analyzed. Model ice drift compares well with observations in terms of large-scale velocity field and distributions of velocity fluctuations although a significant bias on the mean ice speed is noted. On the other hand, the statistical properties of ice deformation are not well simulated by the models: (1) The distributions of strain rates are incorrect: RGPS distributions of strain rates are power law tailed, i.e., exhibit ''wild randomness,'' whereas models distributions remain in the Gaussian attraction basin, i.e., exhibit ''mild randomness.'' (2) The models are unable to reproduce the spatial and temporal correlations of the deformation fields: In the observations, ice deformation follows spatial and temporal scaling laws that express the heterogeneity and the intermittency of deformation. These relations do not appear in simulated ice deformation. Mean deformation in models is almost scale independent. The statistical properties of ice deformation are a signature of the ice mechanical behavior. The present work therefore suggests that the mechanical framework currently used by models is inappropriate. A different modeling framework based on elastic interactions could improve the representation of the statistical and scaling properties of ice deformation.Citation: Girard, L., J. Weiss, J. M. Molines, B. Barnier, and S. Bouillon (2009), Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.