Uncertainty monitoring is a core property of metacognition, allowing individuals to adapt their decision-making strategies depending on the state of their knowledge. Although it has been argued that other animals share these metacognitive abilities, only humans seem to possess the ability to explicitly communicate their own uncertainty to others. It remains unknown whether this capacity is present early in development, or whether it emerges later with the ability to verbally report one’s own mental states. Here, using a nonverbal memory-monitoring paradigm, we show that 20-month-olds can monitor and report their own uncertainty. Infants had to remember the location of a hidden toy before pointing to indicate where they wanted to recover it. In an experimental group, infants were given the possibility to ask for help through nonverbal communication when they had forgotten the toy location. Compared with a control group in which infants had no other option but to decide by themselves, infants given the opportunity to ask for help used this option strategically to improve their performance. Asking for help was used selectively to avoid making errors and to decline difficult choices. These results demonstrate that infants are able to successfully monitor their own uncertainty and share this information with others to fulfill their goals.
SummaryFalling asleep leads to a loss of sensory awareness and to the inability to interact with the environment [1]. While this was traditionally thought as a consequence of the brain shutting down to external inputs, it is now acknowledged that incoming stimuli can still be processed, at least to some extent, during sleep [2]. For instance, sleeping participants can create novel sensory associations between tones and odors [3] or reactivate existing semantic associations, as evidenced by event-related potentials [4–7]. Yet, the extent to which the brain continues to process external stimuli remains largely unknown. In particular, it remains unclear whether sensory information can be processed in a flexible and task-dependent manner by the sleeping brain, all the way up to the preparation of relevant actions. Here, using semantic categorization and lexical decision tasks, we studied task-relevant responses triggered by spoken stimuli in the sleeping brain. Awake participants classified words as either animals or objects (experiment 1) or as either words or pseudowords (experiment 2) by pressing a button with their right or left hand, while transitioning toward sleep. The lateralized readiness potential (LRP), an electrophysiological index of response preparation, revealed that task-specific preparatory responses are preserved during sleep. These findings demonstrate that despite the absence of awareness and behavioral responsiveness, sleepers can still extract task-relevant information from external stimuli and covertly prepare for appropriate motor responses.
SummaryHumans adapt their behavior not only by observing the consequences of their actions but also by internally monitoring their performance. This capacity, termed metacognitive sensitivity [1, 2], has traditionally been denied to young children because they have poor capacities in verbally reporting their own mental states [3, 4, 5]. Yet, these observations might reflect children’s limited capacities for explicit self-reports, rather than limitations in metacognition per se. Indeed, metacognitive sensitivity has been shown to reflect simple computational mechanisms [1, 6, 7, 8], and can be found in various non-verbal species [7, 8, 9, 10]. Thus, it might be that this faculty is present early in development, although it would be discernible through implicit behaviors and neural indices rather than explicit self-reports. Here, by relying on such non-verbal indices, we show that 12- and 18-month-old infants internally monitor the accuracy of their own decisions. At the behavioral level, infants showed increased persistence in their initial choice after making a correct as compared to an incorrect response, evidencing an appropriate evaluation of decision confidence. Moreover, infants were able to use decision confidence adaptively to either confirm their initial choice or change their mind. At the neural level, we found that a well-established electrophysiological signature of error monitoring in adults, the error-related negativity, is similarly elicited when infants make an incorrect choice. Hence, although explicit forms of metacognition mature later during childhood, infants already estimate decision confidence, monitor their errors, and use these metacognitive evaluations to regulate subsequent behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.