Several studies have provided information on environmental nanoplastic particles/debris, but the in vitro cyto-genotoxicity is still insufficiently characterized. The aim of this study is to analyze the effects of polystyrene nanoparticles (PNPs) in the Hs27 cell line. The viability of Hs27 cells was determined following exposure at different time windows and PNP concentrations. The genotoxic effects of the PNPs were evaluated by the cytokinesis-block micronucleus (CBMN) assay after exposure to PNPs. We performed ROS analysis on HS27 cells to detect reactive oxygen species at different times and treatments in the presence of PNPs alone and PNPs added to the Crocus sativus L. extract. The different parameters of the CBMN test showed DNA damage, resulting in the increased formation of micronuclei and nuclear buds. We noted a greater increase in ROS production in the short treatment times, in contrast, PNPs added to Crocus sativus extract showed the ability to reduce ROS production. Finally, the SEM-EDX analysis showed a three-dimensional structure of the PNPs with an elemental composition given by C and O. This work defines PNP toxicity resulting in DNA damage and underlines the emerging problem of polystyrene nanoparticles, which extends transversely from the environment to humans; further studies are needed to clarify the internalization process.
This study discloses the morphological and chemical-structural modifications that occur during thermal degradation of amphibole asbestos. Low-iron tremolite and iron-rich crocidolite were heated at temperatures ranging from r.t. to 1200°C. Heating promoted a complex sequence of iron oxidation, migration and/or clustering and, finally, the formation of brittle fibrous pseudomorphs consisting of newly formed minerals and amorphous nanophases. The effects of the thermal modifications on toxicologically relevant asbestos reactivity were evaluated by quantifying carbon-and oxygen-centred, namely hydroxyl ( % OH), radicals. Heating did not alter carbon radicals, but largely affected oxygencentred radical yields. At low temperature, reactivity of both amphiboles decreased. At 1200°C, tremolite structural breakdown was achieved and the reactivity was further reduced by migration of reactive iron ions into the more stable TO 4 tetrahedra of the newly formed pyroxene(s). Differently, crocidolite breakdown at 1000°C induced the formation of hematite, Fe-rich pyroxene, cristobalite, and abundant amorphous material and restored radical reactivity. Our finding suggests that thermally treated asbestos and its breakdown products still share some toxicologically relevant properties with pristine fibre. Asbestos inertization studies should consider morphology and surface reactivity, beyond crystallinity, when proving that a thermally inactivated asbestos-containing material is safe.
Ultraviolet light can cause photodamage to the skin, such as sunburn and melanomas. TiO2 is introduced in sunscreen formulations to reflect and scatter UV radiation. However, it can also photocatalyze the production of reactive species like O 2 .and OH .. Here, we aimed to remove the photocatalytic activity of TiO2 (anatase and rutile), while preserving the UV filter property. Anatase and rutile were modified through two preparative protocols. The first used HCl lignin precipitation of ethylene glycol lignin solution in the presence of the cross-linker glutaraldehyde and anatase or rutile nanoparticles. The second protocol used HNO3 lignin precipitation of lignin aqueous solution in the presence of anatase or rutile nanoparticles. Both methodologies were performed at room temperature and ambient pressure in green media, with vigorous mixing followed by 20-kHz sonication. The composite materials obtained were fully characterized by SEM, XRD analysis and FT-IR spectroscopy, and their photostability, and photo and shielding activities were evaluated through reference reactions: oxidation of 2-propanol, an ene-reaction conducted on an α,β-unsaturated carboxylic derivative and photochemical transformation of o-nitrobenzaldehyde to o-nitrosobenzoic acid. Therefore, in the near future, industrial use of these new clusters can help to minimize TiO2 phototoxicity in sunscreen formulations, while preserving the sunscreen photoprotection activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.