Hypoxanthine phosphoribosyl transferase (HPRT) deficiency results in Lesch-Nyhan disease (LND). The link between the HPRT defect and the self-injurious behavior in LND is still unknown. HPRT-deficient rat B103 neuroblastoma cells serve as a model system for LND. In B103 cell membranes, HPRT deficiency is associated with a decrease of basal and guanosine triphosphate-stimulated adenylyl cyclase (AC) activity (Pinto and Seifert, J Neurochem 96:454-459, 2006). Since recombinant AC2 possesses a high basal activity, we tested the hypothesis that AC2 function and expression is impaired in HPRT deficiency. We examined AC regulation in B103 cell membranes, cAMP accumulation in intact B103 cells, AC isoform expression, and performed morphological studies. As most important pharmacological tool, we used 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene forskolin (BODIPY-FS) that inhibits recombinant AC2 but activates ACs 1 and 5 (Erdorf et al., Biochem Pharmacol 82:1673-1681, 2011). In B103 control membranes, BODIPY-FS reduced catalysis, but in HPRT(-) membranes, BODIPY-FS was rather stimulatory. 2'(3')-O-(N-methylanthraniloyl) (MANT)-nucleoside 5'-[γ-thio]triphosphates inhibit recombinant ACs 1 and 5 more potently than AC2. In B103 control membranes, MANT-guanosine 5'-[γ-thio]triphosphate inhibited catalysis in control membranes less potently than in HPRT(-) membranes. Quantitative real-time PCR revealed that in HPRT deficiency, AC2 was virtually absent. In contrast, AC5 was up-regulated. Forskolin (FS) and BODIPY-FS induced cell clustering and rounding and neurite extension in B103 cells. The effects of FS and BODIPY-FS were much more prominent in control than in HPRT(-) cells, indicative for a differentiation defect in HPRT deficiency. Neither FS nor BODIPY-FS significantly changed cAMP concentrations in intact B103 cells. Collectively, our data show that HPRT deficiency in B103 cells is associated with impaired AC2 function and expression and reduced sensitivity to differentiation induced by FS and BODIPY-FS. We discuss the pathophysiological implications of our data for LND.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.