Despite considerable advances devoted to improving the operational stability of organic solar cells (OSCs), the metastable morphology degradation remains a challenging obstacle for their practical application. Herein, the stabilizing function of the alloy states in the photoactive layer from the perspective of controlling the aggregation characteristics of non‐fullerene acceptors (NFAs), is revealed. The alloy‐like model is adopted separately into host donor and acceptor materials of the state‐of‐the‐art binary PM6:BTP‐4Cl blend with the self‐stable polymer acceptor PDI‐2T and small molecule donor DRCN5T as the third components, delivering the simultaneously enhanced photovoltaic efficiency and storage stability. In such ternary systems, two separate arguments can rationalize their operating principles: (1) the acceptor alloys strengthen the conformational rigidity of BTP‐4Cl molecules to restrain the intramolecular vibrations for rapid relaxation of high‐energy excited states to stabilize BTP‐4Cl acceptor. (2) The donor alloys optimize the fibril network microstructure of PM6 polymer to restrict the kinetic diffusion and aggregation of BTP‐4Cl molecules. According to the superior morphological stability, non‐radiative defect trapping coefficients can be drastically reduced without forming the long‐lived, trapped charge species in ternary blends. The results highlight the novel protective mechanisms of engineering the alloy‐like composites for reinforcing the long‐term stability of NFA‐based ternary OSCs.
Perovskite light-emitting didoes (PeLEDs) have shown considerable potential in solution-processable display applications. However, the performance of blue PeLEDs in terms of efficiency and stability hinders their practicality on account of severe trap-mediated nonradiative recombination losses and halide phase segregation. To ameliorate these issues, mixed-halide sky-blue perovskite materials are strategically modulated through crystal defect passivation with a trifurcate isocyanate oligomer, which leads to the synergistical suppression of charge trap density and halide ion migration. The proposed approach enables the performance improvement for sky-blue PeLEDs, exhibiting a peak external quantum efficiency of 14.82% and spectrally stable emission at 487 nm. In addition, prolonged operational lifetime and enhanced capability of moisture resistance are achieved simultaneously, approaching a half-lifetime of ≈2900 s at an initial brightness of 178 cd m -2 .
Quasi‐2D perovskites are enchanting alternative materials for solar cells due to their intrinsic stability. The manipulation of crystal orientation of quasi‐2D perovskites is indispensable to target efficient devices, however, the origin of orientation during the film fabrication process still lacks in‐depth understanding and convincing evidence yet, which hinders further boosting the performance of photovoltaic devices. Herein, the crystallizing processes during spin‐coating and annealing are probed by in situ grazing‐incidence wide‐angle X‐ray scattering (GIWAXS), and the incident‐angle‐dependent GIWAXS is conducted to unveil the phase distribution in the films. It is found that undesirable lead iodide sol–gel formed intermediate phase would disturb oriented crystalline growth, resulting in random crystal orientation in poor quasi‐2D films. A general strategy is developed via simple additive agent incorporation to suppress the formation of the intermediate phase. Accordingly, highly oriented perovskite films with reduced trap density and higher carrier mobility are obtained, which enables the demonstration of optimized quasi‐2D perovskite solar cells with a power conversion efficiency of 15.2% as well as improved stability. This work paves a promising way to manipulate the quasi‐2D perovskites nucleation and crystallization processes via tuning nucleation stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.