The bribery problem in elections asks whether an external agent can make some distinguished candidate win or prevent her from winning, by bribing some of the voters. This problem was studied with respect to the weighted swap distance between two votes by Elkind et al. (2009). We generalize this definition by introducing a bound on the distance between the original and the bribed votes. The distance measures we consider include a restriction of the weighted swap distance and variants of the footrule distance, which capture some realworld models of influence an external agent may have on the voters. We study constructive and destructive variants of distance bribery for scoring rules and obtain polynomial-time algorithms as well as NP-hardness results. For the case of element-weighted swap and element-weighted footrule distances, we give a complete dichotomy result for the class of pure scoring rules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.