Effective logistics distribution paths are crucial in enhancing the fundamental competitiveness of an enterprise. This research introduces the genetic algorithm for logistics routing to address pertinent research issues, such as suboptimal scheduling of time-sensitive orders and reverse distribution of goods. It proposes an enhanced scheme integrating the Metropolis criterion. To address the limited local search ability of the genetic algorithm, this study combines the simulated annealing algorithm’s powerful local optimization capability with the genetic algorithm, thereby developing a genetic algorithm with the Metropolis criterion. The proposed method preserves the optimal chromosome in each generation population and accepts inferior chromosomes with a certain probability, thereby enhancing the likelihood of finding an optimal local solution and achieving global optimization. A comparative study is conducted with the Ant Colony Optimization, Artificial Bee Colony, and Particle Swarm Optimization algorithms, and empirical findings demonstrate that the proposed genetic algorithm effectively achieves excellent results over these algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.