R-spondins are a recently characterized small family of growth factors. Here we show that human R-spondin1 (RSPO1) is the gene disrupted in a recessive syndrome characterized by XX sex reversal, palmoplantar hyperkeratosis and predisposition to squamous cell carcinoma of the skin. Our data show, for the first time, that disruption of a single gene can lead to complete female-to-male sex reversal in the absence of the testis-determining gene, SRY.
Our data demonstrate that: (i) cultured autografts bearing stem cells can indeed rapidly and permanently cover a large body surface; and (ii) fibrin is a suitable substrate for keratinocyte cultivation and transplantation. These data lend strength to the concept that the success of cell therapy at a clinical level requires cultivation and transplantation of stem cells. We therefore suggest that the proposal of a culture system aimed at the replacement of any severely damaged self-renewing tissue should be preceded by a careful evaluation of its stem cell population.
High-mobility group box 1 (HMGB1) protein is a multifunctional cytokine involved in inflammatory responses and tissue repair. In this study, it was examined whether HMGB1 plays a role in skin wound repair both in normoglycemic and diabetic mice. HMGB1 was detected in the nucleus of skin cells, and accumulated in the cytoplasm of epidermal cells in the wounded skin. Diabetic human and mouse skin showed more reduced HMGB1 levels than their normoglycemic counterparts. Topical application of HMGB1 to the wounds of diabetic mice enhanced arteriole density, granulation tissue deposition, and accelerated wound healing. In contrast, HMGB1 had no effect in normoglycemic mouse skin wounds, where endogenous HMGB1 levels may be adequate for optimal wound closure. Accordingly, inhibition of endogenous HMGB1 impaired wound healing in normal mice but had no effect in diabetic mice. Finally, HMGB1 had a chemotactic effect on skin fibroblasts and keratinoyctes in vitro. In conclusion, lower HMGB1 levels in diabetic skin may play an important role in impaired wound healing and this defect may be overcome by the topical application of HMGB1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.