Tea is one of the most common beverages in the world. In order to reduce the cost of artificial tea picking and improve the competitiveness of tea production, this paper proposes a new model, termed the Mask R-CNN Positioning of Picking Point for Tea Shoots (MR3P-TS) model, for the identification of the contour of each tea shoot and the location of picking points. In this study, a dataset of tender tea shoot images taken in a real, complex scene was constructed. Subsequently, an improved Mask R-CNN model (the MR3P-TS model) was built that extended the mask branch in the network design. By calculating the area of multiple connected domains of the mask, the main part of the shoot was identified. Then, the minimum circumscribed rectangle of the main part is calculated to determine the tea shoot axis, and to finally obtain the position coordinates of the picking point. The MR3P-TS model proposed in this paper achieved an mAP of 0.449 and an F2 value of 0.313 in shoot identification, and achieved a precision of 0.949 and a recall of 0.910 in the localization of the picking points. Compared with the mainstream object detection algorithms YOLOv3 and Faster R-CNN, the MR3P-TS algorithm had a good recognition effect on the overlapping shoots in an unstructured environment, which was stronger in both versatility and robustness. The proposed method can accurately detect and segment tea bud regions in real complex scenes at the pixel level, and provide precise location coordinates of suggested picking points, which should support the further development of automated tea picking machines.
As compared with the traditional visual discrimination methods, deep learning and image processing methods have the ability to detect plants efficiently and non-invasively. This is of great significance in the diagnosis and breeding of plant disease resistance phenotypes. Currently, the studies on plant diseases and pest stresses mainly focus on a leaf scale. There are only a few works regarding the stress detection at a complex canopy scale. In this work, three tea plant stresses with similar symptoms that cause a severe threat to the yield and quality of tea gardens, including the tea green leafhopper [Empoasca (Matsumurasca) onukii Matsuda], anthracnose (Gloeosporium theae-sinensis Miyake), and sunburn (disease-like stress), are evaluated. In this work, a stress detection and segmentation method by fusing deep learning and image processing techniques at a canopy scale is proposed. First, a specified Faster RCNN algorithm is proposed for stress detection of tea plants at a canopy scale. After obtaining the stress detection boxes, a new feature, i.e., RGReLU, is proposed for the segmentation of tea plant stress scabs. Finally, the detection model at the canopy scale is transferred to a field scale by using unmanned aerial vehicle (UAV) images. The results show that the proposed method effectively achieves canopy-scale stress adaptive segmentation and outputs the scab type and corresponding damage ratio. The mean average precision (mAP) of the object detection reaches 76.07%, and the overall accuracy of the scab segmentation reaches 88.85%. In addition, the results also show that the proposed method has a strong generalization ability, and the model can be migrated and deployed to UAV scenarios. By fusing deep learning and image processing technology, the fine and quantitative results of canopy-scale stress monitoring can provide support for a wide range of scouting of tea garden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.