Spermatogenesis is a critical process for maintaining male fertility. Sustained spermatogonial stem cell self-renewal and differentiation ensures constant spermatogenesis, and several signalling pathways regulate this process. An increasing number of studies have suggested that the mammalian target of rapamycin (mTOR) signalling pathway plays an important role in spermatogenesis; however, the mechanism remains unknown. Our study showed that mTOR was positively related with spermatogenesis by detecting mTOR expression and the expression of its target p70s6k, rps6 and 4e-bp1 at different developmental stages. Phosphorylated p70s6k, rps6 and 4ebp1 levels were independently and gradually down-regulated with age. Subsequently, we showed in vivo and in vitro that, upon mTOR inactivation by rapamycin, the number of sperm significantly decreased (P < 0.05) and spermatogonia proliferation was blocked. Phosphorylated p70s6k and rps6 levels were down-regulated, but the levels of phosphorylated 4e-bp1 did not change. Spermatogonia were treated with the specific PI3K inhibitor LY294002, and p70s6k, rps6 and 4ebp1 phosphorylation overtly decreased. Therefore, we suggest that mTOR plays an important role in spermatogenesis by regulating p70s6k activation and that 4e-bp1 is either directly or indirectly regulated by PI3K.
Discussion on the role of DEHP in the critical period of gonadal development in pregnant rats (F0), studied the evolution of F1-F4 generation of inter-generational inheritance of cryptorchidism and the alteration of DNA methylation levels in testis. Pregnant SD rats were randomly divided into two groups: normal control group and DEHP experimental group. From pregnancy 7d to 19d, experimental group was sustained to gavage DEHP 750mg/kg bw/day, observed the incidence of cryptorchidism in offspring and examined the pregnancy rate of female rats through mating experiments. Continuous recording the rat’s weight and AGD value, after maturation (PND80) recording testis and epididymis’ size and weight, detected the sperm number and quality. Subsequently, we examined the evolution morphological changes of testicular tissue for 4 generation rats by HE staining and Western Blot. Completed the MeDIP-sequencing analysis of 6 samples (F1 generation, F4 generation and Control). DEHP successfully induced cryptorchidism occurrence in offspring during pregnancy. The incidence of cryptorchidism in F1 was 30%, in F2 was 12.5%, and there was no cryptorchidism coming up in F3 and F4. Mating experiment shows conception rate 50% in F1, F2 generation was 75%, the F3 and F4 generation were 100%. HE staining showed that the seminiferous epithelium of F1 generation was atrophy and with a few spermatogenic cell, F2 generation had improved, F3 and F4 generation were tend to be normal. The DNA methyltransferase expression was up-regulated with the increase of generations by Real Time-PCR, immunohistochemistry and Western Blot. MeDIP-seq Data Analysis Results show many differentially methylated DNA sequences between F1 and F4. DEHP damage male reproductive function in rats, affect expression of DNA methyltransferase enzyme, which in turn leads to genomic imprinting methylation pattern changes and passed on to the next generation, so that the offspring of male reproductive system critical role in the development of imprinted genes imbalances, and eventually lead to producing offspring cryptorchidism. This may be an important mechanism of reproductive system damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.