In tauopathies such as Alzheimer's disease (AD), aberrant phosphorylation causes the dissociation of tau proteins from microtubules. The dissociated tau then aggregates into sequent forms from soluble oligomers to paired helical filaments and insoluble neurofibrillary tangles (NFTs). NFTs is a hallmark of AD, while oligomers are found to be the most toxic form of the tau aggregates. Therefore, understanding tau oligomerization with regard to abnormal phosphorylation is important for the therapeutic development of AD. In this study, we investigated the impact of phosphorylated Ser289, one of the 40 aberrant phosphorylation sites of full-length tau proteins, on monomeric and dimeric structures of tau repeat R2 peptides. We carried out intensive replica exchange molecular dynamics simulation with a total simulation time of up to 0.1 ms. Our result showed that the phosphorylation significantly affected the structures of both the monomer and the dimer. For the monomer, the phosphorylation enhanced ordered−disordered structural transition and intramolecular interaction, leading to more compactness of the phosphorylated R2 compared to the wild-type one. As to the dimer, the phosphorylation increased intermolecular interaction and β-sheet formation, which can accelerate the oligomerization of R2 peptides. This result suggests that the phosphorylation at Ser289 is likely to promote tau aggregation. We also observed a phosphorylated Ser289-Na + -phosphorylated Ser289 bridge in the phosphorylated R2 dimer, suggesting an important role of cation ions in tau aggregation. Our findings suggest that phosphorylation at Ser289 should be taken into account in the inhibitor screening of tau oligomerization.
Accurate estimation of solvation free energy (SFE) lays the foundation for accurate prediction of binding free energy. The Poisson‐Boltzmann (PB) or generalized Born (GB) combined with surface area (SA) continuum solvation method (PBSA and GBSA) have been widely used in SFE calculations because they can achieve good balance between accuracy and efficiency. However, the accuracy of these methods can be affected by several factors such as the charge models, polar and nonpolar SFE calculation methods and the atom radii used in the calculation. In this work, the performance of the ABCG2 (AM1‐BCC‐GAFF2) charge model as well as other two charge models, that is, RESP (Restrained Electrostatic Potential) and AM1‐BCC (Austin Model 1‐bond charge corrections), on the SFE prediction of 544 small molecules in water by PBSA/GBSA was evaluated. In order to improve the performance of the PBSA prediction based on the ABCG2 charge, we further explored the influence of atom radii on the prediction accuracy and yielded a set of atom radius parameters for more accurate SFE prediction using PBSA based on the ABCG2/GAFF2 by reproducing the thermodynamic integration (TI) calculation results. The PB radius parameters of carbon, oxygen, sulfur, phosphorus, chloride, bromide and iodine, were adjusted. New atom types, on, oi, hn1, hn2, hn3, were introduced to further improve the fitting performance. Then, we tuned the parameters in the nonpolar SFE model using the experimental SFE data and the PB calculation results. By adopting the new radius parameters and new nonpolar SFE model, the root mean square error (RMSE) of the SFE calculation for the 544 molecules decreased from 2.38 to 1.05 kcal/mol. Finally, the new radius parameters were applied in the prediction of protein‐ligand binding free energies using the MM‐PBSA method. For the eight systems tested, we could observe higher correlation between the experiment data and calculation results and smaller prediction errors for the absolute binding free energies, demonstrating that our new radius parameters can improve the free energy calculation using the MM‐PBSA method.
While the COVID-19 pandemic keeps deteriorating, the effective medicines target the life cycle of SARS-CoV-2 are still under development. With more highly infective and dangerous variants of the coronavirus emerged,...
Malaria is a severe parasite infectious disease with high fatality. As one of the approved treatments of this disease, hydroxychloroquine (HCQ) lacks clinical administration guidelines for patients with special health conditions and co-morbidities. This may result in improper dosing for different populations and lead them to suffer from severe side effects. One of the most important toxicities of HCQ overdose is cardiotoxicity. In this study, we built and validated a physiologically based pharmacokinetic modeling (PBPK) model for HCQ. With the full-PBPK model, we predicted the pharmacokinetic (PK) profile for malaria patients without other co-morbidities under the HCQ dosing regimen suggested by Food and Drug Administration (FDA) guidance. The PK profiles for different special populations were also predicted and compared to the normal population. Moreover, we proposed a series of adjusted dosing regimens for different populations with special health conditions and predicted the concentration-time (C-T) curve of the drug plasma concentration in these populations which include the pregnant population, elderly population, RA patients, and renal impairment populations. The recommended special population-dependent dosage regimens can maintain the similar drug levels observed in the virtual healthy population under the original dosing regimen provided by FDA. Last, we developed mathematic formulas for predicting dosage based on a patient’s body measurements and two indexes of renal function (glomerular filtration rate and serum creatine level) for the pediatric and morbidly obese populations. Those formulas can facilitate personalized treatment of this disease. We hope to provide some advice to clinical practice when taking HCQ as a treatment for malaria patients with special health conditions or co-morbidities so that they will not suffer from severe side effects due to higher drug plasma concentration, especially cardiotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.