Adenylate kinase (ADK) is widely distributed in organisms and plays an important role in cellular energy homeostasis. In plants, ADK has important functions in plant growth and development regulation as well as in adaptation to the environment. However, little information is available about the ADK genes in tomato (Solanum lycopersicum), an important economic crop. To investigate the characteristics and functions of ADK genes in tomato, a total of 11 ADK genes were identified and named according to their chromosomal locations. The ADK family in Arabidopsis, tomato, potato, and rice was divided into six groups, and motif analysis revealed that each SlADK protein contained five to eight conserved motifs. A total of 4 to 19 exons were identified in tomato ADK gene family members, and interestingly, most members possessed 4 exons. Several stress response elements were identified in the promoter regions of SlADKs. The 11 SlADKs were randomly distributed on 9 of the 12 tomato chromosomes. Three duplication events were observed between tomato chromosomes, and a high degree of conservation of synteny was demonstrated between tomato and potato. The online TomExpress platform prediction revealed that SlADKs were expressed in various tissues and organs, basically consistent with the data obtained from real-time quantitative PCR (qPCR). The qPCR verification was also performed to determine the expression level of SlADKs and demonstrated that the genes responded to multiple abiotic stresses, such as drought, salt, and cold. Besides, the qPCR results showed that SlADK transcription was responsive to most of the applied hormone treatment. For correlation network analysis under 44 global conditions, the results showed that the number of 17, 3, 4, and 6 coexpressed genes matched with SlADK5, 8, 9, and 11, respectively. For specific gene function analysis, expression of SlADK10 was inhibited using virus-induced gene silencing (VIGS). Compared to wild-type plants, plants with silenced SlADK10 gene had poor drought resistance, indicating SlADK10 regulated drought tolerance of tomato positively. In summary, the information provided in the present study will be helpful to understand the evolutionary relationship and their roles of tomato ADK gene family in further research.
Vaccinium bracteatum Thunb. (VBT) is widely distributed in the mountainous areas in eastern and southern China. VBT leaves have great medical value and can be used to stain rice to produce “Wumifan”. Its fruits also contain rich nutrients. However, there has been limited attention to exploring the molecular content of VBT. Previously, we performed RNA-seq on three typical VBT fruits that were at various stages of ripening, although a reliable reference gene was lost in validation.In this study, we selected ten candidate reference genes based on previous studies and transcriptomics analyses. Subsequently, these genes were evaluated using a combination of methods, including geNorm, NormFinder, and Bestkeeper, with a comprehensive ranking assessment. As a result, we found that the actin2, NADH, and ADK genes have high reliability for analysing the expression levels of genes involved in fruit development. Furthermore, the transcript levels of 15 DEGs from transcriptomic analysis were assessed using NADH as a reference gene, and RT-qPCR data were highly consistent with the transcriptomic data. These results provide reliable reference genes for further studying gene expression, which will be beneficial for comprehensively exploring VBT.
Background: Adenylate kinase (ADK) is widely distributed in organisms and plays an important role in cellular energy homeostasis. In plants, ADK has important functions in plant growth and development regulation as well as adaptation to the environment. However, little information is available about the ADK genes in tomato (Solanum lycopersicum), an important economic crop.Results: To investigate the characteristics and functions of ADK genes in tomato, a total of 11 ADK genes were identified and named according to their chromosomal locations. The ADK family in Arabidopsis tomato, potato and rice was divided into six groups and motif analysis revealed that each SlADK protein contained five to eight conserved motifs. Sequence analysis revealed 4-19 exons in all SlADKs and most members possessed four. Cis-element analysis inferred that several stress response elements were found on the promoters of SlADKs. The 11 SlADKs were randomly distributed on nine of the 12 tomato chromosomes. Three duplication events were observed between tomato chromosome, and a high degree of conservation of synteny was found between tomato and potato. The online TomExpress platform prediction revealed that SlADKs were expressed in various tissues and organs, basically consistent with the data obtained from real-time quantitative PCR (qPCR). The qPCR verification was also used to determine the expression level of SlADKs and demonstrated that the genes responded to multiple abiotic stresses, such as drought, salt and cold. Besides, the qPCR results showed that SlADK transcription was responsive to most of the applied hormone treatment: methyl jasmonate, ethylene, salicylic acid, indole 3-acetic acid and abscisic acid. Notably, SlADK2 and 4 exhibited significant changes under multiple stress treatments. Furthermore, correlation networks analysis revealed co-expressed genes between SlADKs and other tomato functional genes.Conclusions: These results provide valuable information for clarifying the evolutionary relationship of the tomato ADK family and in aiding functional characterization of SlADKs in further research.
Background: Vaccinium bracteatum Thunb. (VBT) is widely distributed in the mountainous areas in eastern and southern China. VBT leaves have great medical value and can be used to stain rice to produce “Wumifan”. Its fruits also contain rich nutrients. However, there has been limited attention to exploring the molecular content of VBT. Previously, we performed RNA-seq on three typical VBT fruits that were at various stages of ripening, although a reliable reference gene was lost in validation. Results: In this study, we selected ten candidate reference genes based on previous studies and transcriptomics analyses. Subsequently, these genes were evaluated using a combination of methods, including geNorm, NormFinder, and Bestkeeper, with a comprehensive ranking assessment. As a result, we found that the actin2, NADH, and ADK genes have high reliability for analysing the expression levels of genes involved in fruit development. Furthermore, the transcript levels of 15 DEGs from transcriptomic analysis were assessed using NADH as a reference gene, and RT-qPCR data were highly consistent with the transcriptomic data. Conclusions: These results provide a reliable reference gene for further studying gene expression, which will be beneficial for comprehensively exploring VBT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.