Objectives. We have developed a pulsed xenon ultraviolet light-based real-time air disinfection system with rapid and effective disinfection by using high-intensity pulse germicidal UV. Disinfection of the ambulance's environment is critical in the prevention of infectious cross contamination. Methods. In this study, a pulsed xenon ultraviolet light-based air disinfection system was established for real-time air disinfection in ambulances. In this system, a pulsed xenon ultraviolet (PX-UV) was used to generate broad-spectrum (200-320 nm), high-intensity ultraviolet light to deactivate and kill bacteria and viruses. e results showed that the use of PX-UV could be effective in reducing E. coli, Staphylococcus albus, and environmental pathogens level in ambulances (≥90% reduction in 30 mins). Results. is device was relatively simple and easy to use and does not leave chemical residues or risk exposing patients and workers to toxic chemicals. Conclusions. is appears to be a practical alternative technology to achieve automated air disinfection in ambulances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.