This work focuses on online dereverberation for hearing devices using the weighted prediction error (WPE) algorithm. WPE filtering requires an estimate of the target speech power spectral density (PSD). Recently deep neural networks (DNNs) have been used for this task. However, these approaches optimize the PSD estimate which only indirectly affects the WPE output, thus potentially resulting in limited dereverberation. In this paper, we propose an endto-end approach specialized for online processing, that directly optimizes the dereverberated output signal. In addition, we propose to adapt it to the needs of different types of hearing-device users by modifying the optimization target as well as the WPE algorithm characteristics used in training. We show that the proposed endto-end approach outperforms the traditional and conventional DNNsupported WPEs on a noise-free version of the WHAMR! dataset.
This paper introduces an audio-visual speech enhancement system that leverages score-based generative models, also known as diffusion models, conditioned on visual information. In particular, we exploit audio-visual embeddings obtained from a self-supervised learning model that has been fine-tuned on lipreading. The layer-wise features of its transformer-based encoder are aggregated, time-aligned, and incorporated into the noise conditional score network. Experimental evaluations show that the proposed audiovisual speech enhancement system yields improved speech quality and reduces generative artifacts such as phonetic confusions with respect to the audio-only equivalent. The latter is supported by the word error rate of a downstream automatic speech recognition model, which decreases noticeably, especially at low input signal-to-noise ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.