A cocktail of six lytic bacteriophages, SalmoFresh™, significantly (p < 0.05) reduced the number of surface-applied Salmonella Kentucky and Brandenburg from stainless steel and glass surfaces by > 99% (2.1–4.3 log). Both strains were susceptible to SalmoFresh™ in the spot-test assay. Conversely, SalmoFresh™ was unable to reduce surface contamination with a Salmonella Paratyphi B strain that was not susceptible to the phage cocktail in the spot-test assay. However, by replacing two SalmoFresh™ component phages with two new phages capable of lysing the Paratyphi B strain in the spot-test assay, the target range of the cocktail was shifted to include the Salmonella Paratyphi B strain. The modified cocktail, SalmoLyse™, was able to significantly (p < 0.05) reduce surface contamination of the Paratyphi B strain by > 99% (2.1–4.1 log). The data show that both phage cocktails were effective in significantly reducing the levels of Salmonella on hard surfaces, provided the contaminating strains were susceptible in the spot-test (i.e., spot-test susceptibility was indicative of efficacy in subsequent surface decontamination studies). The data also support the concept that phage preparations can be customized to meet the desired antibacterial application.
The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content between strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. The loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars.
Contamination of pet food with Salmonella is a serious public health concern, and several disease outbreaks have recently occurred due to human exposure to Salmonella tainted pet food. The problem is especially challenging for raw pet foods (which include raw meats, seafood, fruits, and vegetables). These foods are becoming increasingly popular because of their nutritional qualities, but they are also more difficult to maintain Salmonella-free because they lack heat-treatment. Among various methods examined to improve the safety of pet foods (including raw pet food), one intriguing approach is to use bacteriophages to specifically kill Salmonella serotypes. At least 2 phage preparations (SalmoFresh Ò and Salmonelex TM ) targeting Salmonella are already FDA cleared for commercial applications to improve the safety of human foods. However, similar preparations are not yet available for pet food applications. Here, we report the results of evaluating one such preparation (SalmoLyse Ò ) in reducing Salmonella levels in various raw pet food ingredients (chicken, tuna, turkey, cantaloupe, and lettuce). Application of SalmoLyse Ò in low (ca. 2-4£10 6 PFU/g) and standard (ca. 9£10 6 PFU/g) concentrations significantly (P < 0.01) reduced (by 60-92%) Salmonella contamination in all raw foods examined compared to control treatments. When SalmoLyse Ò -treated (ca. 2£10 7 PFU/g) dry pet food was fed to cats and dogs, it did not trigger any deleterious side effects in the pets. Our data suggest that the bacteriophage cocktail lytic for Salmonella can significantly and safely reduce Salmonella contamination in various raw pet food ingredients.
f Phages are a primary driving force behind the evolution of bacterial pathogens by transferring a variety of virulence genes into their hosts. Similar to other bacterial genomes, the Salmonella enterica serovar Enteritidis LK5 genome contains several regions that are homologous to phages. Although genomic analysis demonstrated the presence of prophages, it was unable to confirm which phage elements within the genome were viable. Genetic markers were used to tag one of the prophages in the genome to allow monitoring of phage induction. Commonly used laboratory strains of Salmonella were resistant to phage infection, and therefore a rapid screen was developed to identify susceptible hosts. This approach showed that a genetically tagged prophage, ELPhiS (Enteritidis lysogenic phage S), was capable of infecting Salmonella serovars that are diverse in host range and virulence and has the potential to laterally transfer genes between these serovars via lysogenic conversion. The rapid screen approach is adaptable to any system with a large collection of isolates and may be used to test the viability of prophages found by sequencing the genomes of various bacterial pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.