Purpose: Non-small cell lung cancers (NSCLCs) harboring ALK gene rearrangements (ALK þ ) typically become resistant to the first-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) crizotinib through development of secondary resistance mutations in ALK or disease progression in the brain. Mutations that confer resistance to second-generation ALK TKIs ceritinib and alectinib have also been identified. Here, we report the structure and first comprehensive preclinical evaluation of the next-generation ALK TKI brigatinib. Experimental Design: A kinase screen was performed to evaluate the selectivity profile of brigatinib. The cellular and in vivo activities of ALK TKIs were compared using engineered and cancer-derived cell lines. The brigatinib-ALK co-structure was determined.Results: Brigatinib potently inhibits ALK and ROS1, with a high degree of selectivity over more than 250 kinases. Across a panel of ALK þ cell lines, brigatinib inhibited native ALK (IC 50 , 10 nmol/L) with 12-fold greater potency than crizotinib. Superior efficacy of brigatinib was also observed in mice with ALK þ tumors implanted subcutaneously or intracranially. Brigatinib maintained substantial activity against all 17 secondary ALK mutants tested in cellular assays and exhibited a superior inhibitory profile compared with crizotinib, ceritinib, and alectinib at clinically achievable concentrations. Brigatinib was the only TKI to maintain substantial activity against the most recalcitrant ALK resistance mutation, G1202R. The unique, potent, and pan-ALK mutant activity of brigatinib could be rationalized by structural analyses. Conclusions: Brigatinib is a highly potent and selective ALK inhibitor. These findings provide the molecular basis for the promising activity being observed in ALK þ , crizotinib-resistant patients with NSCLC being treated with brigatinib in clinical trials.
In the treatment of echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase positive (ALK+) non-small-cell lung cancer (NSCLC), secondary mutations within the ALK kinase domain have emerged as a major resistance mechanism to both first- and second-generation ALK inhibitors. This report describes the design and synthesis of a series of 2,4-diarylaminopyrimidine-based potent and selective ALK inhibitors culminating in identification of the investigational clinical candidate brigatinib. A unique structural feature of brigatinib is a phosphine oxide, an overlooked but novel hydrogen-bond acceptor that drives potency and selectivity in addition to favorable ADME properties. Brigatinib displayed low nanomolar IC50s against native ALK and all tested clinically relevant ALK mutants in both enzyme-based biochemical and cell-based viability assays and demonstrated efficacy in multiple ALK+ xenografts in mice, including Karpas-299 (anaplastic large-cell lymphomas [ALCL]) and H3122 (NSCLC). Brigatinib represents the most clinically advanced phosphine oxide-containing drug candidate to date and is currently being evaluated in a global phase 2 registration trial.
Members of the fibroblast growth factor receptor family of kinases (FGFR1-4) are dysregulated in multiple cancers. Ponatinib (AP24534) is an oral multitargeted tyrosine kinase inhibitor being explored in a pivotal phase II trial in patients with chronic myelogenous leukemia due to its potent activity against BCR-ABL. Ponatinib has also been shown to inhibit the in vitro kinase activity of all four FGFRs, prompting us to examine its potential as an FGFR inhibitor. In Ba/F3 cells engineered to express activated FGFR1-4, ponatinib potently inhibited FGFR-mediated signaling and viability with IC 50 values <40 nmol/L, with substantial selectivity over parental Ba/F3 cells. In a panel of 14 cell lines representing multiple tumor types (endometrial, bladder, gastric, breast, lung, and colon) and containing FGFRs dysregulated by a variety of mechanisms, ponatinib inhibited FGFR-mediated signaling with IC 50 values <40 nmol/L and inhibited cell growth with GI 50 (concentration needed to reduce the growth of treated cells to half that of untreated cells) values of 7 to 181 nmol/L. Daily oral dosing of ponatinib (10-30 mg/kg) to mice reduced tumor growth and inhibited signaling in all three tumor models examined. Importantly, the potency of ponatinib in these models is similar to that previously observed in BCR-ABL-driven models and plasma levels of ponatinib that exceed the IC 50 values for FGFR1-4 inhibition can be sustained in patients. These results show that ponatinib is a potent pan-FGFR inhibitor and provide strong rationale for its evaluation in patients with FGFR-driven cancers.
Activating gene rearrangements of anaplastic lymphoma kinase (ALK) have been identified as driver mutations in non-small-cell lung cancer, inflammatory myofibroblastic tumors, and other cancers. Crizotinib, a dual MET/ALK inhibitor, has demonstrated promising clinical activity in patients with non-small-cell lung cancer and inflammatory myofibroblastic tumors harboring ALK translocations. Inhibitors of driver kinases often elicit kinase domain mutations that confer resistance, and such mutations have been successfully predicted using in vitro mutagenesis screens. Here, this approach was used to discover an extensive set of ALK mutations that can confer resistance to crizotinib. Mutations at 16 residues were identified, structurally clustered into five regions around the kinase active site, which conferred varying degrees of resistance. The screen successfully predicted the L1196M, C1156Y, and F1174L mutations, recently identified in crizotinib-resistant patients. In separate studies, we demonstrated that crizotinib has relatively modest potency in ALK-positive non-small-cell lung cancer cell lines. A more potent ALK inhibitor, TAE684, maintained substantial activity against mutations that conferred resistance to crizotinib. Our study identifies multiple novel mutations in ALK that may confer clinical resistance to crizotinib, suggests that crizotinib's narrow selectivity window may underlie its susceptibility to such resistance and demonstrates that a more potent ALK inhibitor may be effective at overcoming resistance.
AP26113 is a potent and selective inhibitor of anaplastic lymphoma kinase (ALK) (AACR 2010; #3623). Activating gene rearrangements of ALK, such as EML4-ALK, have been identified as driver mutations in NSCLC and other cancers. There is strong precedence for the development of resistance to targeted therapies that inhibit driver mutations. Kinase domain mutations that confer resistance in patients have been successfully predicted by in vitro mutagenesis screens in BaF3 cells (e.g. BCR-ABL in CML). Here, the BaF3 system was used to identify mutations in ALK that confer resistance to PF1066, a clinically validated dual Met/ALK inhibitor (ASCO 2009; #3509), or AP26113. PF1066-resistant mutations were identified at all concentrations tested (up to 2000 nM). In contrast, 1000 nM AP26113 completely suppressed emergence of resistance. Six mutations, all in the kinase domain, were identified that confer some degree of resistance to 1 or both compounds (Table). AP26113 inhibited viability of BaF3 cells expressing these mutants with IC50s of 23 - 269 nM. PF1066 inhibited viability with IC50s of 311 -1419 nM, with 3 mutants having sensitivity indistinguishable from parental BaF3 cells, which lack EML4-ALK. The 2 mutations that confer the greatest resistance to PF1066 were examined in a BaF3 xenograft model in which compounds were administered daily by oral dosing. A 200 mg/kg dose of PF1066 induced regression of tumors expressing native EML4-ALK but was completely inactive against G1269S or L1196M (gatekeeper) mutants. In contrast, AP26113 induced regression of tumors expressing native EML4-ALK and the G1269S and L1196M mutants at 25, 50 and 50 mg/kg, respectively. Analysis of ALK phosphorylation in tumors demonstrated strong inhibition of the mutants by 50 mg/kg AP26113 but not 200 mg/kg PF1066. These results identify several mutations that may confer resistance to PF1066 in patients and suggest that more potent compounds such as AP26113 may be required to overcome such resistance.Sensitivity of BaF3 cells expressing native and mutant EML4-ALK to PF-02341066 and AP26113BaF3 cell linePF-02341066 IC50 ± SD AP26113 IC50 ± SD BaF3 cell line(nM)TI**(nM)TI**Parental*1116 ±436—2169 ±655—Native EML4-ALK153 ± 29714 ±2151EML4-ALK mutants: F1174C497 ± 202104 ± 1921L1196M1157 ± 401166 ±733S1206R838 ± 2521269 ± 688E1210K311 ± 80488 ± 1225F1245C366 ±8373 ± 1130G1269S1419 ±618123 ± 594*Parental BaF3 cells lack EML4-ALK and therefore require IL-3 for growth**Therapeutic Index = Parental IC50 / EML4-ALK IC50 Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr LB-298.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.