Antibody-like proteins selected from discovery platforms are preferentially functionalized by site-specific modification as this approach preserves the binding abilities and allows a side-by-side comparison of multiple conjugates. Here we present an enzymatic bioconjugation platform that targets the c-myc-tag peptide sequence (EQKLISEEDL) as a handle for the site-specific modification of antibody-like proteins. Microbial transglutaminase (MTGase) was exploited to form a stable isopeptide bond between the glutamine on the c-myc-tag and various primary-amine-functionalized substrates. We attached eight different functionalities to a c-myc-tagged antibody fragment and used these bioconjugates for downstream applications such as protein multimerization, immobilization on surfaces, fluorescence microscopy, fluorescence-activated cell sorting, and in vivo nuclear imaging. The results demonstrate the versatility of our conjugation strategy for transforming a c-myc-tagged protein into any desired probe.
The ADP-ribosylation factor-like (Arl) family of small G proteins are involved in the regulation of diverse cellular processes. Arl2 does not appear to be membrane localized and has been implicated as a regulator of microtubule dynamics. The downstream effector for Arl2, Binder of Arl 2 (BART) has no known function but, together with Arl2, can enter mitochondria and bind the adenine nucleotide transporter. We have solved the solution structure of BART and show that it forms a novel fold composed of six ␣-helices that form three interlocking "L" shapes. Analysis of the backbone dynamics reveals that the protein is highly anisotropic and that the loops between the central helices are dynamic. The regions involved in the binding of Arl2 were mapped onto the surface of BART and are found to localize to these loop regions. BART has faces of differing charge and structural elements, which may explain how it can interact with other proteins.
We report (1)H, (13)C and (15)N resonance assignments for Binder of Arl Two (BART), an effector of the small G protein Arl2. The BMRB accession code is 15914.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.